首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seed weight, percentage germination, seedling growth, and nutrient concentrations (Mg, Na, K, Zn, Cu and P) of whole seeds, and of seed coats and embryos separately of two tree species, the native Prosopis cineraria and the invasive alien P. juliflora from semi-arid and arid areas of north and north-west India, were analysed to understand the differences in their ecology. Seeds of P. cineraria were heavier than those of P. juliflora. Percent germination was similar in the two species, but seedling growth was faster in P. juliflora than in P. cineraria. Nutrient concentrations of seeds of the two species were similar (except Cu). Nutrient concentrations in the embryo were higher in P. cineraria, while those in the seed coat were higher in P. juliflora. The relative allocation of nutrients to seed coat was higher in P. juliflora than in P. cineraria. Nutrient-rich embryos and slow growth, along with a staggered seed germination pattern in the native P. cineraria could be linked to delayed establishment as well, in the substratum. Faster growth of the nutrient-poor embryos in P. juliflora along with its simultaneous seed germination pattern, and creation of a favourable microenvironment through leaching of nutrients from a nutrient-rich seed coat can facilitate immediate and successful establishment of this alien species in the invaded habitats.  相似文献   

2.
Nutrient dynamics on a precipitation gradient in Hawai'i   总被引:10,自引:0,他引:10  
We evaluated soil and foliar nutrients in five native forests in Hawai'i with annual rainfall ranging from 500 mm to 5500 mm. All of the sites were at the same elevation and of the same substrate age; all were native-dominated forests containing Metrosiderospolymorpha Gaud. Soil concentrations of extractable NO3-N and PO4-P, as well as major cations (Ca, Mg, and K), decreased with increasing annual precipitation, and δ15N values became more depleted in both soils and vegetation. For M.polymorpha leaves, leaf mass per area (LMA) and lignin concentrations increased significantly, while δ13C values became more depleted with increasing precipitation. Foliar phosphorus, and major cation (Ca, Mg, and K) concentrations for M.polymorpha all decreased significantly with increasing precipitation. For other native forest species, patterns of LMA, δ13C, and δ15N generally mirrored the pattern observed for M. polymorpha. Decreasing concentrations of available rock-derived nutrients in soil suggest that the effect of increased rainfall on leaching outweighs the effect of increasing precipitation on weathering. The pattern of decreased foliar nutrient concentrations per unit leaf area and of increased lignin indicates a shift from relatively high nutrient availability to relatively high carbon gain by producers as annual precipitation increases. For nitrogen cycling, the pattern of higher inorganic soil nitrogen concentrations in the drier sites, together with the progressively depleted δ15N signature in both soils and vegetation, suggests that nitrogen cycling is more open at the drier sites, with smaller losses relative to turnover as annual precipitation increases. Received: 24 March 1997 / Accepted: 19 September 1997  相似文献   

3.
Efforts to improve models of terrestrial productivity and to understand the function of tropical forests in global carbon cycles require a mechanistic understanding of spatial variation in aboveground net primary productivity (ANPP) across tropical landscapes. To help derive such an understanding for Borneo, we monitored aboveground fine litterfall, woody biomass increment and ANPP (their sum) in mature forest over 29 months across a soil nutrient gradient in southwestern Kalimantan. In 30 (0.07 ha) plots stratified throughout the watershed (∼340 ha, 8–190 m a.s.l.), we measured productivity and tested its relationship with 27 soil parameters. ANPP across the study area was among the highest reported for mature lowland tropical forests. Aboveground fine litterfall ranged from 5.1 to 11.0 Mg ha−1 year−1 and averaged 7.7 ± 0.4 (mean ± 95 C.I.). Woody biomass increment ranged from 5.8 to 23.6 Mg ha−1 year−1 and averaged 12.0 ± 2.0. Growth of large trees (≥60 cm dbh) contributed 38–82% of plot-wide biomass increment and explained 92% of variation among plots. ANPP, the sum of these parameters, ranged from 11.1 to 32.3 Mg ha−1 year−1 and averaged 19.7 ± 2.2. ANPP was weakly related to fine litterfall (r 2 = 0.176), but strongly related to growth of large trees at least 60 cm dbh (r 2 = 0.848). Adjusted ANPP after accounting for apparent “mature forest bias” in our sampling method was 17.5 ± 1.2 Mg ha−1 year−1.Relating productivity measures to soil parameters showed that spatial patterning in productivity was significantly related to soil nutrients, especially phosphorus (P). Fine litterfall increased strongly with extractable P (r 2 = 0.646), but reached an asymptote at moderate P levels, whereas biomass increment (r 2 = 0.473) and ANPP (r 2 = 0.603) increased linearly across the gradient. Biomass increment of large trees was more frequently and strongly related to nutrients than small trees, suggesting size dependency of tree growth on nutrients. Multiple linear regression confirmed the leading importance of soil P, and identified Ca as a potential co-limiting factor. Our findings strongly suggest that (1) soil nutrients, especially P, limit aboveground productivity in lowland Bornean forests, and (2) these forests play an important, but changing role in carbon cycles, as canopy tree logging alters these terrestrial carbon sinks. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Forest harvesting and wildfire were widespread in the upper Great Lakes region of North America during the early 20th century. We examined how long this legacy of disturbance constrains forest carbon (C) storage rates by quantifying C pools and fluxes after harvest and fire in a mixed deciduous forest chronosequence in northern lower Michigan, USA. Study plots ranged in age from 6 to 68 years and were created following experimental clear‐cut harvesting and fire disturbance. Annual C storage was estimated biometrically from measurements of wood, leaf, fine root, and woody debris mass, mass losses to herbivory, soil C content, and soil respiration. Maximum annual C storage in stands that were disturbed by harvest and fire twice was 26% less than a reference stand receiving the same disturbance only once. The mechanism for this reduction in annual C storage was a long‐lasting decrease in site quality that endured over the 62‐year timeframe examined. However, during regrowth the harvested and burned forest rapidly became a net C sink, storing 0.53 Mg C ha−1 yr−1 after 6 years. Maximum net ecosystem production (1.35 Mg C ha−1 yr−1) and annual C increment (0.95 Mg C ha−1 yr−1) were recorded in the 24‐ and 50‐year‐old stands, respectively. Net primary production averaged 5.19 Mg C ha−1 yr−1 in experimental stands, increasing by < 10% from 6 to 50 years. Soil heterotrophic respiration was more variable across stand ages, ranging from 3.85 Mg C ha−1 yr−1 in the 6‐year‐old stand to 4.56 Mg C ha−1 yr−1 in the 68‐year‐old stand. These results suggest that harvesting and fire disturbances broadly distributed across the region decades ago caused changes in site quality and successional status that continue to limit forest C storage rates.  相似文献   

5.
The effects of the invasive exotic Prosopis juliflora shrubs on the natural plant communities and soil chemical characters were assessed in two regions of the United Arab Emirates (UAE). Five sites were selected subjectively: three in Sharja with 73 stands and two in Ras Al-Khima with 37 stands. Stands were located randomly within each site to cover density variation in Sharja and size variation in Ras Al-Khima. Density, frequency, richness and evenness of the associated annual and perennial species were studied in nine quadrats distributed under, at the margin and outside the canopy of a P. juliflora shrub located in the center of each stand. The results indicated that the effect of P. juliflora on the associated flora depends significantly on the density and size of the canopy. Larger individuals and greater densities have significantly greater negative impacts on the associated plants. All the studied community attributes were significantly lower under P. juliflora canopies than outside. Annuals were inhibited more than perennials. The number of annuals with significant reductions in density and/or frequency under P. juliflora canopies was significantly greater than the number of perennials. Density of more than 50% of the associated annuals was significantly inhibited under P. juliflora canopies. Density of P. juliflora seedlings was greater underneath the canopy of the same species than away from them, indicating little or no self allelopathic effect (auto-inhibition) under field conditions. P. juliflora ameliorated some soil characters, through significant pH reduction and increase in K, N and P and organic matters. Hence, plant diversity might be enhanced following eradication of P. juliflora.  相似文献   

6.
The ability of different alpine species to influence soil nutrient concentrations was quantified by growing monocultures of 17 species on a homogenized acid alpine soil mixture. The experiment was carried out at 2750 m a.s.l. in the Teberda Reserve, Northwest Caucasus. Soil nuturient contents (NH4, NO3, P, Ca, Mg, and K) and pH were analyzed after 6 years. The same soil mixture but without plants was used as a control. The plant species had significant effects on all soil properties. Different species groups tended to decrease different nutrients to different extents, e.g.Matricaria caucasica had the lowest level for NO3 andFestuca ovina for P. Many species increased the cation content (Ca, Mg, K) in the soil in comparison with the control. Prevention of cation leaching seems to be the main mechanism of these increases, because initial cation contents were higher than the final. All species, exceptSibbaldia procumbens, increased soil pH in comparison with the final control. Significant differences among taxonomic groups (families) were found for exchangeable Ca, Mg, and pH.Fabaceae decreased cation contents (Ca, Mg), but tended to increase nitrogen (NH4, NO3).Cyperaceae (Carex spp.) tended to decrease ammonium content, and bothAsteraceae andCyperaceae tended to decrease nitrate concentrations. The phosphorus content tended to be reduced by grasses. There was no strong correspondence between properties of native soils of 4 alpine communities and nutrient concentrations for species preferring those communities.  相似文献   

7.
We evaluated how litter raking removed basic nutrients from forest soils by simulating this historical silvicultural practice on two spruce stands (Picea abies) in the Czech Republic. Experimental litter raking depleted the soil pool of exchangeable base cation nutrients (Ca2+, Mg2+ and K+) by up to 31% after the first litter raking in 2003. A second litter raking in the following year further reduced the soil pool by up to 16%, and the third litter raking in 2005 reduced the pool by up to 6% more. These losses of base cations were substantially greater than their annual input into the forest soil (estimated as from total atmospheric deposition and mineral weathering) as well as their annual runoff. The concentration of Mg and Ca in spruce needless decreased considerably within 3 years from the beginning of the experiment. In addition, the observed litter chemistry was used to estimate historical nutrient removal from litter raking by applying them to historical records of litter removal rates. According to these calculations, the annual loss of total Ca, Mg and K from spruce stands would be from 40% to 100% of its present annual input into the soil, and from 50% to 190% of annual runoff. On the basis of previous results estimated by geochemical modeling, we found that the loss of base cations due to litter raking was similar to their leaching due to acid deposition. We conclude that long-term removal of litter as widely practiced throughout the 19th century in Central Europe may have been responsible for a loss of base cations equivalent to that caused by acid deposition during the 20th century.  相似文献   

8.
Cycling of six mineral elements (N, P, K, Na, Ca and Mg) was studied in a humid subtropical grassland at Cherrapunji, north-eastern India during 1988-1989. Elemental concentrations in the shoot of four dominant grass species,viz., Arundinella khaseana, Chrysopogon gryllus, Eragrostiella leioptera andEulalia trispicata were very low, and none of the species appears suitable for fodder use. Among different vegetation compartments, live root was the largest reservoir of all the nutrients (except Ca) followed by live shoot, dead shoot, litter and dead root. For Ca, live shoot was the major storage compartment. The total annual uptake (kg ha-1) was 137.3, 10.4, 51.1, 5.5, 8.7 and 18.2 for N, P, K, Na, Ca and Mg, respectively. In an annual cycle 98% N, 77% P, 49% K, 109% Na, 87% Ca and 65% Mg returned to the soil through litter and belowground detritus. A major portion of N, P and Na was recycled through the belowground system, whereas nearly half of K, Ca and Mg was recycled through the shoot system. Precipitation acts as the source of N and P input, but at the same time causes loss of cations.  相似文献   

9.
We conducted a 6-year field manipulation drought experiment in an evergreen Quercus ilex forest where we simulated the drought predicted by GCM and ecophysiological models for the coming decades (an average of 15% soil moisture reduction). We thereby tested the hypothesis that enhanced drought will change Ca, Fe, Mg, Mo and S availability, concentrations and accumulation patterns in Mediterranean ecosystems. The strongest effects of drought occurred in the soil. Drought increased the total soil concentrations of S, the soil extract concentrations of Fe, Mg and S, the Mg saturation in the soil exchangeable complex and tended to increase the percentage base saturation of the soil exchangeable complex. These increased soil concentrations were related to a decrease of plant uptake capacity and not to an increase of soil enzyme activity, which in fact decreased under drier conditions. Drought increased leaf Mg concentrations in the three dominant species although only significantly in Quercus ilex and Arbutus unedo (20 and 14%, respectively). In contrast, drought tended to decrease Ca in Phillyrea latifolia (18%) and Ca and Fe concentrations in the wood of all three species. Drought increased Ca and Fe concentrations in the roots of Quercus ilex (26 and 127%). There was a slight general trend to decrease total biomass accumulation of nutrients that depend on water flux such as Mg, Fe and S. This effect was related to a decrease of soil moisture that reduced soil flow, and to a decrease in photosynthetic capacity, sap flow, transpiration and growth, and therefore plant uptake capacity under drought observed in Quercus ilex and Arbutus unedo. On the contrary, drought increased Mo accumulation in aboveground biomass in Phillyrea latifolia and reduced Mo accumulation in Arbutus unedo by reducing growth and wood Mo concentrations (51%). Phillyrea latifolia showed a great capacity to adapt to drier conditions, with no decrease in growth, an increase of Mo uptake capacity and a decrease in leaf Ca concentration, which was related to a decrease in transpiration under drought. The results indicate asymmetrical changes in species capacity to accumulate these elements, which are likely to produce changes in inter-specific competitive relations among dominant plant species and in their nutritional quality as food sources. The results also indicate that drought tended to decrease nutrient content in aboveground biomass, mainly through the decrease in growth and transpiration of the most sensitive species and caused an increase in the availability of these nutrients in soil. Thus, drought decreased the ecosystem’s capacity to retain Mg, Fe and S, facilitating their loss in torrential rainfalls.  相似文献   

10.
To be sustainable, feedstock harvest must neither degrade soil, water, or air resources nor negatively impact productivity or subsequent crop yields. Simulation modeling will help guide the development of sustainable feedstock production practices, but not without field validation. This paper introduces field research being conducted in six states to support Sun Grant Regional Partnership modeling. Our objectives are to (1) provide a fundamental understanding of limiting factor(s) affecting corn (Zea mays L.) stover harvest, (2) develop tools (e.g., equations, models, etc.) that account for those factors, and (3) create a multivariant analysis framework to combine models for all limiting factors. Sun Grant modelers will use this information to improve regional estimates of feedstock availability. A minimum data set, including soil organic carbon (SOC), total N, pH, bulk density (BD), and soil‐test phosphorus (P), and potassium (K) concentrations, is being collected. Stover yield for three treatments (0%, 50%, and 90% removal) and concentrations of N, P, and K in the harvested stover are being quantified to assess the impact of stover harvest on soil resources. Grain yield at a moisture content of 155 g kg?1 averaged 9.71 Mg ha?1, matching the 2008 national average. Stover dry matter harvest rates ranged from 0 to 7 Mg ha?1. Harvesting stover increased N–P–K removal by an average of 42, 5, and 45 kg ha?1 compared with harvesting only grain. Replacing those three nutrients would cost $53.68 ha?1 based on 2009 fertilizer prices. This first‐year data and that collected in subsequent years is being used to develop a residue management tool that will ultimately link multiple feedstock supplies together in a landscape vision to help develop a comprehensive carbon management plan, quantify corn stover harvest effects on soil quality, and predict regional variability in feedstock supplies.  相似文献   

11.
Eva Ritter 《Plant and Soil》2007,295(1-2):239-251
Afforestation has become an important tool for soil protection and land reclamation in Iceland. Nevertheless, the harsh climate and degraded soils are growth-limiting for trees, and little is know about changes in soil nutrients in maturing forests planted on the volcanic soils. In the present chronosequence study, changes in C, N and total P in soil (0–10 and 10–20 cm depth) and C and N in foliar tissue were investigated in stands of native Downy birch (Betula pubescens Enrh.) and the in Iceland introduced Siberian larch (Larix sibirica Ledeb.). The forest stands were between 14 and 97 years old and were established on heath land that had been treeless for centuries. Soils were Andosols derived from basaltic material and rhyolitic volcanic ash. A significant effect of tree species was only found for the N content in foliar tissue. Foliar N concentrations were significantly higher and foliar C/N ratios significantly lower in larch needles than in birch leaves. There was no effect of stand age. Changes in soil C and the soil nutrient status with time after afforestation were little significant. Soil C concentrations in 0–10 cm depth in forest stands older than 30 years were significantly higher than in heath land and forest stands younger than 30 years. This was attributed to a slow accumulation of organic matter. Soil N concentrations and soil Ptot were not affected by stand age. Nutrient pools in the two soil layers were calculated for an average weight of soil material (400 Mg soil ha−1 in 0–10 cm depth and 600 Mg soil ha−1 in 10–20 cm depth, respectively). Soil nutrient pools did not change significantly with time. Soil C pools were in average 23.6 Mg ha−1 in the upper soil layer and 16.9 Mg ha−1 in the lower soil layer. The highest annual increase in soil C under forest compared to heath land was 0.23 Mg C ha−1 year−1 in 0–10 cm depth calculated for the 53-year-old larch stand. Soil N pools were in average 1.0 Mg N ha−1 in both soil layers and did not decrease with time despite a low N deposition and the uptake and accumulation of N in biomass of the growing trees. Soil Ptot pools were in average 220 and 320 kg P ha−1 in the upper and lower soil layer, respectively. It was assumed that mycorrhizal fungi present in the stands had an influence on the availability of N and P to the trees. Responsible Editor: Hans Lambers.  相似文献   

12.
Summary Lotus scoparius is a drought-deciduous shrub which is an early and abundant colonizer of sites following fire in southern California chaparral. Productivity, seasonal nutrient concentrations, nutrient accumulations and phenology were studied in a 4-year-old burn site in Adenostoma chaparral in which L. scoparius had established 49% cover. Net aboveground primary production for L. scoparius was 105 g m-2 y-1; leaves accounted for 40% of the annual production. The true increment to biomass was only 17 g m-2 y-1; 83% of the net production entered the litter layer or standing dead components. In response to the Mediterranean climatic regime, most of the annual net production and plant activity occurred from May through June when photoperiod and temperatures were favorable and moisture was available. In July leaf abscission occurred in response to the summer drought conditions. Correlation and principal component analysis suggested consistent seasonal behavior in the foliar concentrations of N, P, Zn, and Mn. Nitrogen, P, K, and Zn were strongly reabsorbed from leaf tissues before abscission. Calcium, Mg, and Fe formed a second functional group of elements which increased in concentration throughout leaf maturation and which were not reabsorbed from senescing foliage. The seasonal pattern of nitrogen-containing organic compounds (chlorophylls and proteins) was most associated with the leaf phenology and water stress. The rapid growth of Lotus scoparius plays a role in conserving nutrients that might be lost through runoff and erosion after fire in the chaparral.  相似文献   

13.
The importance of litter to nutrient and organic matter storage and the possible influence of species selection on soil fertility in ten stands each consisting of a separate tree species were examined in this study. The plantations had been grown under similar conditions in an arboretum in the Luquillo Experimental Forest, Puerto Rico. The species involved were: Anthocephalus chinensis, Eucalyptus × patentinervis, E. saligna, Hernandia sonora, Hibiscus elatus, Khaya nyasica, Pinus caribaea var. hondurensis, P. elliottii var. densa, Swietenia macrophylla, and Terminalia ivorensis. After 26 yr, litter mass ranged from 5 mg ha-1 in the H. sonora stand to 27.2 Mg ha-1 in the P. caribaea stand. Nutrients in the litter (N, P, K, Ca, and Mg) also varied widely, but stands were ranked in different order when ranked by nutrients in the litter than then ranked according to accumulation of mass. Only E. saligna and A. chinensis stands were ranked similarly in accumulation of both nutrients and mass, and the stand of H. elatus was ranked higher with respect to nutrient accumulation than to accumulation of mass. The nutrient concentration in standing leaf litter generally increased in the order of recently fallen <old intact< fragmented. Nutrient concentration of standing leaf litter appears to increase with age and depth in the litter layer. The amount of nutrients stored in the litter compartment of these plantations was in the same order of magnitude as the quantity of available nutrients in the top 10-cm of mineral soil. Total litter mass was negatively correlated with the mass-weighted concentration of N, K, and Mg. The same relationship was found for Ca in the leaf litter and N in the fine wood litter compartments. In some stands (notably P. caribaea, P. elliottii, and E. saligna), leaf litter derived from species other than the species planted in that particular stand had higher nutrient concentration than leaf litter from the planted species. Soils of the 10 stands were classified in the same soil series and had similar texture (clay soils). However, significantly different chemical characteristics were found. Results obtained by analysis of covariance and by limiting comparisons to adjacent stands with similar soil texture, indicate that different species have had different influences on the concentration of available nutrients in soil.  相似文献   

14.
In the present study Prosopis juliflora plants grown in hydroponics solution were exposed to 50,100 and 1000 μM CdCl2. The cadmium uptake, transport and toxicity on the photosynthetic activities in the plants were measured at 48 h after starting cadmium treatments. The results showed that the concentration of Cd2+ in P. juliflora tended to increase with addition of Cd2+ to hydroponics solution. However, the increase of Cd2+ in roots and leaves varied largely. In this sense, the accumulation of Cd2+ in P. juliflora roots increased significantly in proportion with the addition of this metal. In contrast a relatively low level of Cd2+ transportation index, and bioaccumulation factor were found in P. juliflora at 48 h after of treatments. On the other hand the maximum photochemical efficiency of photosystem II (Fv/Fm) and the activity of photosystem II (Fv/Fo) ratios in P. juliflora leaf treated with Cd2+ not showed significantly changes during the experiment. These results suggested that the photosynthetic apparatus of P. juliflora was not the primary target of the Cd2+ action. Further studies will be focused in understanding the participation of the root system in Prosopis plants with the rhizosphere activation and root adsorption to soil Cd2+ under natural conditions.  相似文献   

15.
Litterfall and fine root production is a major pathway for carbon and nutrient cycling in forest ecosystems. We investigated leaf litterfall, fine-root mass, production and turnover rate in the upper soil (0–30 cm) under four major tree species (Leucaena leucocephala, Acacia nilotica, Azadirachta indica, Prosopis juliflora) of the semi-arid region of India. All the four tree species showed an unimodal peak of leaf litterfall with distinct seasonality. Leucaena leucocephala and Acacia nilotica had maximum leaf litterfall between September and December while Azadirachta indica and Prosopis juliflora shed most of their leaves between February and May. Annual leaf litterfall of the four species ranged from 3.3 Mg ha?1 (Leucaena leucocephala) to 8.1 Mg ha?1 (Prosopis juliflora). Marked seasonal variations in amount of fine root biomass were observed in all the four tree species. Fine root production was maximum in Prosopis juliflora (171 g m?2 y?1) followed by Azadirachta indica (169 g m?2 y?1), Acacia nilotica (106 g m?2 y?1) and Leucaena leucocephala (79 g m?2 y?1). Fine root biomass showed a seasonal peak after the rainy season but fell to its lowest value during the winter and dry summer season. Fine root turnover rate ranged from 0.56 to 0.97 y?1 and followed the order Azadirachta indica > Leucaena leucocephala > Prosopis juliflora > Acacia nilotica. The results of this study demonstrated that Prosopis juliflora and Azadirachta indica had greater capability for maintaining site productivity as evidenced from greater leaf litterfall and fine root production.  相似文献   

16.
Mayor  X.  Rodá  F. 《Plant Ecology》1992,(1):209-217
Correlations between primary production and patterns of nutrient use and nutrient availability were investigated in 18 plots in closed holm oak (Quercus ilex L.) stands in the Montseny mountains (NE Spain), searching for evidence of nutrient limitation on primary production. The plots spanned a range of altitudes and slope aspects within a catchment. Nutrients considered were nitrogen (N), phosphorus (P), potassium (K) and magnesium (Mg) in plant samples, and the above plus calcium (Ca) and sodium (Na) in the soil. Primary production was found by summing the annual aboveground biomass increment to the annual litterfall. Across plots, primary production was correlated with the annual return of nutrients in litterfall, but this relationship probably arose from the common effects of the amount of litterfall on both primary production and nutrient return, and not from any nutrient limitation. Primary production was not significantly correlated with nutrient concentrations in mature leaves nor leaf litterfall, nor with absolute or relative foliar retranslocation of nutrients before leaf abscission, nor with the concentration and content (kg/ha) of total N, extractable P, and exchangeable K, Mg, Ca and Na in the upper mineral soil. We conclude that there is no correlational evidence that primary production is nutrient limited in this holm oak forest.  相似文献   

17.
High concentrations of boron (B) and selenium (Se) naturally found in the environment are detrimental to sustainable agriculture in the western USA. Greenhouse pot experiments were conducted to study B and Se uptake in three different plant species; Brassica juncea (L.) Czern (wild brown mustard), Festuca arundinacea Schreb. L. (tall fescue), and Brassica napus (canola) were grown in soil containing naturally occurring concentrations of 3.00 mg extractable B kg–1 and 1.17 mg total Se kg–1 soil. During the growing season, four intermediate harvests were performed on wild mustard and tall fescue. Final harvest I consisted of harvesting wild mustard, canola, and clipping tall fescue. Final harvest II consisted of harvesting wild mustard, which had been planted in soil in which wild mustard was previously grown, and harvesting previously clipped tall fescue. The greatest total amount of above ground biomass and below surface biomass was produced by tall fescue. Plants were separated into shoots and roots, weighted, and plant tissues were analyzed for total B and Se. The highest concentrations of tissue B were recovered in shoots of wild mustard and canola at final harvest I, while roots from tall fescue contained the highest concentrations of B irrespective of the harvest. Tissue Se concentrations were similar in all plants species. Soils were analyzed for residual B and Se. Extractable soil B concentrations at harvest times were lowered no less than 32% and total Se no less than 24% for all three species. The planting of wild mustard, canola, or tall fescue can reduce water-extractable B and total Se in the soil.  相似文献   

18.
Summary

The relationship between the Rhum ultrabasic skeletal soils and their debris vegetation was investigated by plant analyses and field and laboratory experiments. Samples of Agrostis vinealis, Arenaria norvegica ssp norvegica, Calluna vulgaris, Festuca vivipara, Plantago maritima and Racomitrium lanuginosum from these soils usually had low concentrations of potassium and calcium, and high concentrations of sodium, magnesium (and high Mg/Ca quotients), iron and nickel. There were instances of very high iron concentrations (up to 22.4mg g?1 in Plantago maritima), very high Mg/Ca quotients (up to 27.8 in Arenaria novegica spp. norvegica) and high nickel concentrations (up to 0.48mg g?1 in Plantago maritima). A nutrient addition experiment which was set up in 1965 on an exposed barren area had in 1982 over twice as many species as originally recorded and a nearly complete plant cover. Shorter-term work has confirmed that nutrient availability limits the ultrabasic vegetation. An experiment on Agrostis vinealis in simulated soil solutions showed that a gabbro (non-ultrabasic) clone had a higher R.G.R. (relative growth rate), even at the higher of two experimental Mg/Ca quotients, than two peridotite (ultrabasic) clones and was moreover not significantly affected by the higher nickel concentration used. It is concluded that the low vegetation cover on the skeletal soils is maintained by low soil nutrients which might interact with the coarsely sandy texture in exacerbating the effects of periodic drought and frost heaving. There is no unequivocal evidence for plant toxicities associated with high magnesium or nickel in the Rhum soils.  相似文献   

19.
Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential perennial bioenergy feedstocks. Feedstock storage limitations, labor constraints for harvest, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock as an alternative or in conjunction with annual feedstocks (i.e., crop residues). Little information is available on yield, mineral, and thermochemical properties of native species as related to harvest time. The study’s objectives were to compare the feedstock quantity and quality between grasses harvested in the fall or the following spring. It was hypothesized that biomass yield may decline, but translocation and/or leaching of minerals from the feedstock would improve feedstock quality. Feedstock yield did not differ by crop, harvest time, or their interactions. Both grasses averaged 6.0 Mg ha?1 (fall) and 5.4 Mg ha?1 (spring) with similar high heating value (17.7 MJ kg?1). The K/(Ca?+?Mg) ratio, used as a quality indicator declined to below a 0.5 threshold, but energy yield (Megajoule per kilogram) decreased 13 % by delaying harvest until spring. Only once during the four study-years were conditions ideal for early spring harvest, in contrast during another spring, very muddy conditions resulted in excessive soil contamination. Early spring harvest may be hampered by late snow, lodging, and muddy conditions that may delay or prevent harvest, and result in soil contamination of the feedstock. However, reducing slagging/fouling potential and the mass of mineral nutrients removed from the field without a dramatic loss in biomass or caloric content are reasons to delay harvest until spring.  相似文献   

20.
Laboratory studies were conducted to determine the potential molluscicidal activity of five Nigerian plant species used in alternative medicine practice as anthelmintics. Laboratory-bred adult Biomphalaria pfeifferi, the snail host of Schistosoma mansoni in Nigeria, and their viable 0- to 24-hour-old egg masses were separately exposed for 24 hours, in replicated bioassays, to 7.81–4 000 mg l?1 concentrations of crude ethanolic extracts of the leaves and roots of Annona senegalensis, Anogeissus leiocarpus, Crotalaria retusa, Dalbergia sissoo and Vernonia amygdalina. Fruits and stem bark of D. sissoo were also investigated. The 24-hour LC50 and LC90 values of extracts for target organisms were calculated using probit analysis. Susceptibility of target organisms to extracts varied with the plant species and morphological part. Egg masses and adult snails were most susceptible to D. sissoo fruit extract (LC90 values of 89.29 and 74.33 mg l?1, respectively) and least susceptible to V. amygdalina leaf extract (LC90 values of 11 864.09 and 6 241.61 mg l?1, respectively). Concentration-dependent behavioural responses and embryo deaths at the gastrula/exogastrula and/or prehatch snail stages of development were observed in exposed snails and egg masses, respectively. Tested extracts of A. senegalensis, A. leiocarpus, C. retusa and V. amygdalina did not show appreciable toxicities to B. pfeifferi egg masses or adults. For demonstrating significant molluscicidal activity (LC90 < 100 mg l?1) and toxicities to egg masses, we recommend further studies on the ethanolic extracts of D. sissoo fruits and roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号