首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
Chemotaxis toward amino acids in Escherichia coli   总被引:30,自引:34,他引:30       下载免费PDF全文
Escherichia coli cells are shown to be attracted to the l-amino acids alanine, asparagine, aspartate, cysteine, glutamate, glycine, methionine, serine, and threonine, but not to arginine, cystine, glutamine, histidine, isoleucine, leucine, lysine, phenylalanine, tryptophan, tyrosine, or valine. Bacteria grown in a proline-containing medium were, in addition, attracted to proline. Chemotaxis toward amino acids is shown to be mediated by at least two detection systems, the aspartate and serine chemoreceptors. The aspartate chemoreceptor was nonfunctional in the aspartate taxis mutant, which showed virtually no chemotaxis toward aspartate, glutamate, or methionine, and reduced taxis toward alanine, asparagine, cysteine, glycine, and serine. The serine chemoreceptor was nonfunctional in the serine taxis mutant, which was defective in taxis toward alanine, asparagine, cysteine, glycine, and serine, and which showed no chemotaxis toward threonine. Additional data concerning the specificities of the amino acid chemoreceptors with regard to amino acid analogues are also presented. Finally, two essentially nonoxidizable amino acid analogues, alpha-aminoisobutyrate and alpha-methylaspartate, are shown to be attractants for E. coli, demonstrating that extensive metabolism of attractants is not required for amino acid taxis.  相似文献   

2.
Asparagine chemotaxis in Bacillus subtilis appears to involve two partially redundant adaptation mechanisms: a receptor methylation-independent process that operates at low attractant concentrations and a receptor methylation-dependent process that is required for optimal responses to high concentrations. In order to elucidate these processes, chemotactic responses were assessed for strains expressing methylation-defective mutations in the asparagine receptor, McpB, in which all 10 putative receptors (10del), five receptors (5del) or only the native copy of mcpB were deleted. This was done in both the presence and the absence of the methylesterase CheB. We found that: (i) only responses to high concentrations of asparagine were impaired; (ii) the presence of all heterologous receptors fully compensated for this defect, whereas responses progressively worsened as more receptors were taken away; (iii) methyl-group turnover occurred on heterologous receptors after the addition of asparagine, and these methylation changes were required for the restoration of normal swimming behaviour; (iv) in the absence of the methyleste-rase, the presence of heterologous receptors in some cases caused impaired chemotaxis; and (v) either a certain threshold number of receptors must be present to promote basal CheA activity, or one or more of the receptors missing in the 10del background (but present in the 5del background) is required for establishing basal CheA activity. Taken together, these findings suggest that many or all chemoreceptors work as an ensemble that constitutes a robust chemotaxis system. We propose that the ability of non-McpB receptors to compensate for the methylation-defective McpB mutations involves lateral transmission of the adapted conformational change across the ensemble.  相似文献   

3.
A comparison is made of the N- and C-terminal amino acids from 96 published protein sequences, 26 from prokaryotes, 70 from eukaryotes. The observed frequencies of the N-terminal amino acids methionine, alanine and serine in prokaryotes, and alanine and serine in eukaryotes are significantly higher than expected for a random arrangement of amino acids. At the C-terminal end, the observed frequencies of lysine, asparagine and glutamine in prokaryotes and phenylalanine, asparagine and glutamine in eukaryotes exceed random expectation. These results could be explained by specific proteolytic cleavage during protein synthesis.  相似文献   

4.
To study the relationship between the primary structure of transforming growth factor alpha (TGF-alpha) and some of its functional properties (competition with epidermal growth factor (EGF) for binding to the EGF receptor and induction of anchorage-independent growth), we introduced single amino acid mutations into the sequence for the fully processed, 50-amino-acid human TGF-alpha. The wild-type and mutant proteins were expressed in a vector by using a yeast alpha mating pheromone promoter. Mutations of two amino acids that are conserved in the family of the EGF-like peptides and are located in the carboxy-terminal part of TGF-alpha resulted in different biological effects. When aspartic acid 47 was mutated to alanine or asparagine, biological activity was retained; in contrast, substitutions of this residue with serine or glutamic acid generated mutants with reduced binding and colony-forming capacities. When leucine 48 was mutated to alanine, a complete loss of binding and colony-forming abilities resulted; mutation of leucine 48 to isoleucine or methionine resulted in very low activities. Our data suggest that these two adjacent conserved amino acids in positions 47 and 48 play different roles in defining the structure and/or biological activity of TGF-alpha and that the carboxy terminus of TGF-alpha is involved in interactions with cellular TGF-alpha receptors. The side chain of leucine 48 appears to be crucial either indirectly in determining the biologically active conformation of TGF-alpha or directly in the molecular recognition of TGF-alpha by its receptor.  相似文献   

5.
Aminooxyacetate, a known inhibitor of transaminase reactions and glycine decarboxylase, promotes rapid depletion of the free pools of serine and aspartate in nitrate grown Lemna minor L. This compound markedly inhibits the methionine sulfoximine-induced accumulation of free ammonium ions and greatly restricts the methionine sulfoximine-induced depletion of amino acids such as glutamate, alanine, and asparagine. These results suggest that glutamate, alanine, and asparagine are normally catabolized to ammonia by transaminase-dependent pathways rather than via dehydrogenase or amidohydrolase reactions. Aminooxyacetate does not inhibit the methionine sulfoximine-induced irreversible deactivation of glutamine synthetase in vivo, indicating that these effects cannot be simply ascribed to inhibition of methionine sulfoximine uptake by amino-oxyacetate. This transaminase inhibitor promotes extensive accumulation of several amino acids including valine, leucine, isoleucine, alanine, glycine, threonine, proline, phenylalanine, lysine, and tyrosine. Since the aminooxyacetate induced accumulations of valine, leucine, and isoleucine are not inhibited by the branched-chain amino acid biosynthesis inhibitor, chlorsulfuron, these amino acid accumulations most probably involve protein turnover. Depletions of soluble protein bound amino acids are shown to be approximately stoichiometric with the free amino acid pool accumulations induced by aminooxyacetate. Aminooxyacetate is demonstrated to inhibit the chlorsulfuron-induced accumulation of α-amino-n-butyrate in L. minor, supporting the notion that this amino acid is derived from transamination of 2-oxobutyrate.  相似文献   

6.
The uptake of amino acids from a chemically defined medium was determined for various species ofFusobacterium. Reference strains utilized a wider range and higher levels of amino acids than clinical isolates. Among the acidic and basic amino acids, arginine, histidine, and glutamate were used by most species. In general, nonpolar neutral amino acids such as alanine, valine, leucine, isoleucine, proline, and methionine were poorly utilized. Apart from glycine and tyrosine, the neutral but polar amino acids such as serine, cysteine, and asparagine were incorporated at significantly high levels. ThusFusobacterium species, unlike several Gram-negative anaerobic bacteria, have the capacity to utilize both free amino acids and peptides as energy sources and may partly account for the wide distribution of these species in areas of tissue degradation.  相似文献   

7.
Amino acids emitted and extracted from surface-sterilized larvae and adults of Heterodera glycines were identified by paper chromatography and quantitatively analyzed by column chromatography. Five amino acids (alanine, aspartic acid, glutamic acid, glycine and serine) were emitted by H. glycines larvae and eight others (asparagine, glutamine, leucine/isoleucine, lysine, methionine sulfoxide, threonine, tyrosine, valine/methionine) were found in extracts from crushed larvae.In addition to the amino acids emitted or extracted from larvae, four others were emitted by adults (γ-aminobutyric acid, histidine, phenylalanine, and proline). Four different amino acids (arginine, cystathionine, hydroxyproline, and ornithine) were found only in the extract from crushed adults. Greater quantities of alanine, aspartic acid and glycine were emitted than could be detected in nematode extracts suggesting selective emission.Subsamples of nematode populations were taken from growing plants 19, 26, 33, and 40 days after inoculation and extracted to determine whether changes in specific amino acid content correlated with aging. Proline content shifted most, increasing from 4.1% to 21.5% of the total amino acid complement from the 19th to the 40th days.  相似文献   

8.
In eukaryotes, two isozymes (I and II) of methionine aminopeptidase (MetAP) catalyze the removal of the initiator methionine if the penultimate residue has a small radius of gyration (glycine, alanine, serine, threonine, proline, valine, and cysteine). Using site-directed mutagenesis, recombinant yeast MetAP I derivatives that are able to cleave N-terminal methionine from substrates that have larger penultimate residues have been expressed. A Met to Ala change at 329 (Met206 in Escherichia coli enzyme) produces an average catalytic efficiency 1.5-fold higher than the native enzyme on normal substrates and cleaves substrates containing penultimate asparagine, glutamine, isoleucine, leucine, methionine, and phenylalanine. Interestingly, the native enzyme also has significant activity with the asparagine peptide not previously identified as a substrate. Mutation of Gln356 (Gln233 in E. coli MetAP) to alanine results in a catalytic efficiency about one-third that of native with normal substrates but which can cleave methionine from substrates with penultimate histidine, asparagine, glutamine, leucine, methionine, phenylalanine, and tryptophan. Mutation of Ser195 to alanine had no effect on substrate specificity. None of the altered enzymes produced cleaved substrates with a fully charged residue (lysine, arginine, aspartic acid, or glutamic acid) or tyrosine in the penultimate position.  相似文献   

9.
When Lemna minor L. is supplied with the potent inhibitor of glutamine synthetase, methionine sulfoximine, rapid changes in free amino acid levels occur. Glutamine, glutamate, asparagine, aspartate, alanine, and serine levels decline concomitantly with ammonia accumulation. However, not all free amino acid pools deplete in response to this inhibitor. Several free amino acids including proline, valine, leucine, isoleucine, threonine, lysine, phenylalanine, tyrosine, histidine, and methionine exhibit severalfold accumulations within 24 hours of methionine sulfoximine treatment. To investigate whether these latter amino acid accumulations result from de novo synthesis via a methionine sulfoximine insensitive pathway of ammonia assimilation (e.g. glutamate dehydrogenase) or from protein turnover, fronds of Lemna minor were prelabeled with [15N]H4+ prior to supplying the inhibitor. Analyses of the 15N abundance of free amino acids suggest that protein turnover is the major source of these methionine sulfoximine induced amino acid accumulations. Thus, the pools of valine, leucine, isoleucine, proline, and threonine accumulated in response to the inhibitor in the presence of [15N]H4+, are 14N enriched and are not apparently derived from 15N-labeled precursors. To account for the selective accumulation of amino acids, such as valine, leucine, isoleucine, proline, and threonine, it is necessary to envisage that these free amino acids are relatively poorly catabolized in vivo. The amino acids which deplete in response to methionine sulfoximine (i.e. glutamate, glutamine, alanine, aspartate, asparagine, and serine) are all presumably rapidly catabolized to ammonia, either in the photorespiratory pathway or by alternative routes.  相似文献   

10.
凤眼莲(Eichhornia crassipes)的根分泌物中含有Met等多种氨基酸,其中Met、GABA、Gly、Ala、Asp、Ser、Val和Leu(10-7~10-2mol·L-1)均对凤眼莲的根际肠杆菌属F2(Enterobacter sp.F2)细菌有强烈的正趋化作用;Glu、Thr和His(10-7~10-3mol·L-1)也对该菌有一定的正趋化作用;而Lys、Cys、Arg、Tyr、Pro、Asn、Gln、Ile、Phe和Typ则对该菌表现出一定的负趋化作用.对细菌的正趋化作用存在一个趋化物的最适浓度范围.具有正趋化作用的氨基酸在凤眼莲根际的浓度都较高,而具有负趋化作用的浓度则较低,这正是凤眼莲与该根际细菌结合为根际微生态系统的原因之一.  相似文献   

11.
A study of the uptake of amino acids and its influence by a peptide source was carried out withFusobacterium varium as a convenient representative of the genus. Reference strains and a clinical isolate had similar amino acid uptake profiles, but most amino acids were incorporated at lower concentrations by the latter. In general, high levels of serine, asparagine, glutamate, cysteine, and arginine were incorporated by all species. Histidine, lysine, threonine, and aspartate were taken up at lower levels, whereas the nonpolar neutral amino acids such as alanine, valine, leucine, isoleucine, glycine, proline, phenylalanine, and methionine were poorly metabolized. Yeast extract, as a source of peptides, stimulated the uptake of several amino acids such as histidine and glutamate, whereas others such as methionine, threonine, and asparagine were repressed. The incorporation of some amino acids such as aspartate, ornithine, lysine, and arginine was unaffected by the presence of peptides. Equimolar nitrogen concentrations of amino acids or ammonia could not replace the peptide requirement, emphasizing the importance of peptides as an energy source. The limited capacity ofFusobacterium spp. to hydrolyze proteins increased approximately 30% in the presence of the proteolytic species,Porphyromonas gingivalis, and may represent one bacterial interaction in which peptides may become available toFusobacterium species in vivo.  相似文献   

12.
Amino-terminal processing in the yeast Saccharomyces cerevisiae has been investigated by examining numerous mutationally altered forms of iso-1-cytochrome c. Amino-terminal residues of methionine were retained in sequences having penultimate residues of arginine, asparagine, glutamine, isoleucine, leucine, lysine, and methionine; in contrast, the amino-terminal methionine residues were exercised from residues of alanine, glycine, and threonine and were partially excised from residues of valine. The results suggest the occurrence of a yeast aminopeptidase that removes amino-terminal residues of methionine when they precede certain amino acids. A systematic search of the literature for amino-terminal sequences formed at initiation sites suggests the hypothetical yeast aminopeptidase usually has the same specificity as the amino peptidase from bacteria and higher eukaryotes. Our results and the results from the literature search suggest that the aminopeptidase cleaves amino-terminal methionine when it precedes residues of alanine, glycine, proline, serine, threonine, and valine but not when it precedes residues of arginine, asparagine, aspartic acid, glutamine glutamic acid, isoleucine, leucine, lysine, or methionine. In contrast to the normal iso-1-cytochrome c and in contrast to the majority of the mutationally altered proteins, certain forms were acetylated including the following sequences: acetyl(Ac)-Met-Ile-Arg-, Ac-Met-Ile-Lys, Ac-Met-Met-Asn-, and Ac-Met-Asn-Asn-. We suggest yeast contains acetyltransferases that acetylates these mutant forms of iso-1-cytochromes c because their amino-terminal regions resemble the amino-terminal regions of natural occurring proteins which are normally acetylated. The lack of acetylation of closely related sequences suggest that the hypothetical acetyltransferases are specific for certain amino-terminal sequences and that the 3 amino-terminal residues may play a critical role in determining these specificities.  相似文献   

13.
The conversion of ketomethiobutyrate to methionine has been previously examined in a number of organisms, wherein the aminotransferases responsible for the reaction have been found to be members of the Ia subfamily (L. C. Berger, J. Wilson, P. Wood, and B. J. Berger, J. Bacteriol. 183:4421-4434, 2001). The genome of Bacillus subtilis has been found to contain no subfamily Ia aminotransferase sequences. Instead, the analogous enzymes in B. subtilis were found to be members of the If subfamily. These putative aspartate aminotransferases, the yugH, ywfG, ykrV, aspB, and patA gene products, have been cloned, expressed, and characterized for methionine regeneration activity. Only YkrV was able to convert ketomethiobutyrate to methionine, and it catalyzed the reaction only when glutamine was used as amino donor. In contrast, subcellular homogenates of B. subtilis and Bacillus cereus utilized leucine, isoleucine, valine, alanine, phenylalanine, and tyrosine as effective amino donors. The two putative branched-chain aminotransferase genes in B. subtilis, ybgE and ywaA, were also cloned, expressed, and characterized. Both gene products effectively transaminated branched-chain amino acids and ketoglutarate, but only YbgE converted ketomethiobutyrate to methionine. The amino donor preference for methionine regeneration by YbgE was found to be leucine, isoleucine, valine, phenylalanine, and tyrosine. The B. subtilis ybgE gene is a member of the family III of aminotransferases and falls in a subfamily designated here IIIa. Examination of B. cereus and Bacillus anthracis genome data found that there were no subfamily IIIa homologues in these organisms. In both B. cereus and B. anthracis, two putative branched-chain aminotransferases and two putative D-amino acid aminotransferases were discovered as members of subfamily IIIb. These four sequences were cloned from B. cereus, expressed, and characterized. Only the gene product from the sequence designated Bc-BCAT2 was found to convert ketomethiobutyrate to methionine, with an amino donor preference of leucine, isoleucine, valine, phenylalanine, and tyrosine. The B. anthracis homologue of Bc-BCAT2 was also cloned, expressed, and characterized and was found to be identical in activity. The aminooxy compound canaline was found to be an uncompetitive inhibitor of B. subtilis YbgE and also inhibited growth of B. subtilis and B. cereus in culture.  相似文献   

14.
The radicals produced by reactions of hydroxyl radicals with amino acids in aqueous solutions have been investigated. Hydroxyl radicals were formed by U.V.-photolysis of hydrogen peroxide and the short-lived amino acid radicals were spin-trapped by tert-nitrosobutane and identified by electron spin resonance spectroscopy. Nineteen amino acids were studied, and several radicals were identified which have not been observed previously by other methods. Only side-chain radicals were identified for alanine, threonine, aspartic acid, asparagine, lysine, phenylalanine, tyrosine, proline and hydroxyproline; whereas for glycine the C(2) carbon radical was spin-trapped. Both C(2) carbon radicals and side-chain radicals were assigned to valine, leucine, isoleucine, serine, glutamic acid, glutamine, arginine and methionine.  相似文献   

15.
Chemotaxis by Bacillus subtilis requires the inter-acting chemotaxis proteins CheC and CheD. In this study, we show that CheD is absolutely required for a behavioural response to proline mediated by McpC but is not required for the response to asparagine mediated by McpB. We also show that CheC is not required for the excitation response to asparagine stimulation but is required for adaptation while asparagine remains complexed with the McpB chemoreceptor. CheC displayed an interaction with the histidine kinase CheA as well as with McpB in the yeast two-hybrid assay, suggesting that the mechanism by which CheC affects adaptation may result from an interaction with the receptor-CheA complex. Furthermore, CheC was found to be related to the family of flagellar switch proteins comprising FliM and FliY but is not present in many proteobacterial genomes in which CheD homologues exist. The distinct physiological roles for CheC and CheD during B. subtilis chemotaxis and the observation that CheD is present in bacterial genomes that lack CheC indicate that these proteins can function independently and may define unique pathways during chemotactic signal transduction. We speculate that CheC interacts with flagellar switch components and dissociates upon CheY-P binding and subsequently interacts with the receptor complex to facilitate adaptation.  相似文献   

16.
1. Proline was found to be the major component of CTC-12 (44%) and FSS II (45%) strain.2. The cypermethrin treatment resulted in an increase in most of the amino acids of sixth instar larvae and all amino acids of adult beetles of CTC 12 strain.3. In the susceptible strain (FSS II), however, the tyrosine, phenylalanine and arginine increased, whereas serine, proline, glycine, alanine, valine, isoleucine, leucine and lysine were decreased significantly in the sixth instar larvae.4. In the FSS II adult beetles, only aspartic acid increased, while other amino acids either decreased (threonine, proline, glycine, alanine, valine, methionine, isoleucine, tyrososine, lysine, arginine) or remained unaffected (serine, glutamic acid, leucine, phenylalanine, histidine).  相似文献   

17.
Chemotaxis by Pseudomonas aeruginosa.   总被引:14,自引:3,他引:11       下载免费PDF全文
Chemotaxis by Pseudomonas aeruginosa RM46 has been studied, and conditions required for chemotaxis have been defined, by using the Adler capillary assay technique. Several amino acids, organic acids, and glucose were shown to be attractants of varying effectiveness for this organism. Ethylenediaminetetraacetic acid was absolutely required for chemotaxis, and magnesium was also necessary for a maximum response. Serine taxis was greatest when the chemotaxis medium contained 1.5 X 10(-5) M ethylenediaminetetraacetic acid and 0.005 M magnesium chloride. It was not necessary to include methionine in the chemotaxis medium. The strength of the chemotactic responses to glucose and to citrate was dependent on prior growth of the bacteria on glucose and citrate, respectively. Accumulation in response to serine was inhibited by the addition of succinate, citrate, malate, glucose, pyruvate, or methionine to the chemotaxis medium. Inhibition by succinate was not dependent on the concentration of attractant in the capillary. However, the degree to which glucose and citrate inhibited serine taxis was dependent on the carbon source utilized for growth. Further investigation of this inhibition may provide information about the mechanisms of chemotaxis in P. aeruginosa.  相似文献   

18.
The synthesis and release of alanine and glutamine have been studied in the intact rat epitrochlaris skeletal muscle preparation. Aspartate, cysteine, leucine, valine, methionine, isoleucine, serine, theronine, and glycine increased significantly the formation and release of alanine from muscle. Cysteine, leucine, valine, methionine, isoleucine, tyrosine, lysine, and phenylalanine increased the rate of glutamine synthesis. Only ornithine, arginine, and tryptophan were without effect on the synthesis of either alanine or glutamine. Half-maximal stimulation of alanine and glutamine formation by added amino acids was observed with concentrations ranging between 0.5 and 1.0 mM. Increases in alanine and glutamine formation were not accompanied by changes in pyruvate production or glucose uptake. The progressive decline in alanine and glutamine synthesis noted on prolonged incubation was prevented by the addition of amino acids to the incubation medium. Stimulation of alanine synthesis by added amino acids was unaffected by inhibition of glycolysis with iodoacetate. Inhibition of alanine aminotransferase with aminooxyacetate significantly decreased alanine formation. Pyruvate and ammonium chloride did not increase further the rate of either alanine or glutamine formation above that produced by added amino acids. These data indicate that most amino acids are precursors for alanine and glutamine synthesis in skeletal muscle. A general mechanism is presented for the de novo formation of alanine from amino acids in skeletal muscle, and the importance of proteolysis for the supply of amino acid precursors for alanine and glutamine synthesis is discussed.  相似文献   

19.
An evolutionary scheme is postulated in which a primitive code, involving only guanine and cytosine, would code for glycine (GG), alanine (GC), arginine (CG) and proline (CC). From each of these amino acids and their codons, there evolves a family of related amino acids as the code expands. The four families are: (1)alanine valine, leucine, isoleucine, phenylalanine, tyrosine, methionine and tryptophane; (2)proline, threonine and serine; (3)arginine, lysine, and histidine; (4)glycine, serine, cysteine, glutamic acid, glutamine, aspartic acid and asparagine. Except for the glycine relation to glutamic acid and aspartic acid, all amino acids are related by chemical similarities in their side chains. Glycine not having a side chain would permit a more complex set of substitutions.  相似文献   

20.
SYNOPSIS. Euglena gracilis (bacillaris variety, strain SM-L1, streptomycin-bleached) used the following amino adds (10−3 M) as sole nitrogen source for growth on a defined medium: glycine, alanine, valine, leucine, isoleucine, serine, threonine, and glutamic acid. Aspartic acid was used at 10−2 M. Glutamine and asparagine were used at 10−3 M and were better N sources than their parent dicarboxylic amino acids. Not used as sole N source for growth were phenylalanine, tyrosine, tryptophan, cysteine, cystine, methionine, proline, hydroxyproline, histidine, arginine, lysine, and taurine. Astasia longa (Jahn strain) was more restricted than Euglena and used only asparagine and glutamine as N sources for growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号