首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vervaeke K  Hu H  Graham LJ  Storm JF 《Neuron》2006,49(2):257-270
The persistent Na+ current, INaP, is known to amplify subthreshold oscillations and synaptic potentials, but its impact on action potential generation remains enigmatic. Using computational modeling, whole-cell recording, and dynamic clamp of CA1 hippocampal pyramidal cells in brain slices, we examined how INaP changes the transduction of excitatory current into action potentials. Model simulations predicted that INaP increases afterhyperpolarizations, and, although it increases excitability by reducing rheobase, INaP also reduces the gain in discharge frequency in response to depolarizing current (f/I gain). These predictions were experimentally confirmed by using dynamic clamp, thus circumventing the longstanding problem that INaP cannot be selectively blocked. Furthermore, we found that INaP increased firing regularity in response to sustained depolarization, although it decreased spike time precision in response to single evoked EPSPs. Finally, model simulations demonstrated that I(NaP) increased the relative refractory period and decreased interspike-interval variability under conditions resembling an active network in vivo.  相似文献   

2.
Mutations in PRoline Rich Transmembrane protein 2 (PRRT2) cause pleiotropic syndromes including benign infantile epilepsy, paroxysmal kinesigenic dyskinesia, episodic ataxia, that share the paroxysmal character of the clinical manifestations. PRRT2 is a neuronal protein that plays multiple roles in the regulation of neuronal development, excitability, and neurotransmitter release. To better understand the physiopathology of these clinical phenotypes, we investigated PRRT2 interactome in mouse brain by a pulldown-based proteomic approach and identified α1 and α3 Na+/K+ ATPase (NKA) pumps as major PRRT2-binding proteins. We confirmed PRRT2 and NKA interaction by biochemical approaches and showed their colocalization at neuronal plasma membrane. The acute or constitutive inactivation of PRRT2 had a functional impact on NKA. While PRRT2-deficiency did not modify NKA expression and surface exposure, it caused an increased clustering of α3-NKA on the plasma membrane. Electrophysiological recordings showed that PRRT2-deficiency in primary neurons impaired NKA function during neuronal stimulation without affecting pump activity under resting conditions. Both phenotypes were fully normalized by re-expression of PRRT2 in PRRT2-deficient neurons. In addition, the NKA-dependent afterhyperpolarization that follows high-frequency firing was also reduced in PRRT2-silenced neurons. Taken together, these results demonstrate that PRRT2 is a physiological modulator of NKA function and suggest that an impaired NKA activity contributes to the hyperexcitability phenotype caused by PRRT2 deficiency.Subject terms: Proteomics, Cellular neuroscience, Molecular neuroscience, Paediatric neurological disorders  相似文献   

3.
Injection of Mg2+ into spinal motoneurons of cats leads to a depolarization, associated with a fall in membrane conductance, diminution in post-spike hyperpolarization, and increased excitability. This action has an apparent reversal level substantially more negative than the resting potential, and can be ascribed to a fall in K+ membrane conductance. Since these effects are opposite to those produced by intracellular Ca2+, it is suggested that Mg2+ probably competes with Ca2+ at the Ca2+-activated K+ ionophoreal free ionophores. Neuronal excitability can be regulated by the ratio of internal free Ca2+/Mg2+.  相似文献   

4.
Hippocampal CA1 neurons express both mineralocorticoid and glucocorticoid receptors. Due to the difference in affinity of the two receptor types for corticosterone and variations in endogenous steroid levels, occupation of the receptors will range between a situation of predominant mineralocorticoid receptor activation and conditions where both receptor types are occupied. It was observed that local signal transduction is regulated by activation of the corticosteroid receptors. Particularly, transmission mediated by biogenic amines appears to be sensitive to steroid control. The data indicate that cholinergic and serotonergic responses are small with predominant mineralocorticoid receptor activation, while additional glucocorticoid receptor activation results in large responses; the reverse has been found for noradrenalin. The steroid-dependent control over transmission by biogenic amines will influence local excitability and therefore functional processes in which the hippocampal system is involved.  相似文献   

5.
Calretinin is a member of the calcium-binding protein EF-hand family first identified in the retina. As with the other 200-plus calcium-binding proteins, calretinin serves a range of cellular functions including intracellular calcium buffering, messenger targeting, and is involved in processes such as cell cycle arrest, and apoptosis. Calcium-binding proteins including calretinin are expressed differentially in neuronal subpopulations throughout the vertebrate and invertebrate nervous system and their expression has been used to selectively target specific cell types and isolate neuronal networks. More recent experiments have revealed that calretinin plays a crucial role in the modulation of intrinsic neuronal excitability and the induction of long-term potentiation (LTP). Furthermore, selective knockout of calretinin in mice produces disturbances of motor coordination and suggests a putative role for calretinin in the maintenance of calcium dynamics underlying motor adaptation.  相似文献   

6.
7.
Classical burster models are based on a fast system that either oscillates or is quiescent, depending on temporarily fixed values of slow variables. In a study of the lobster heart ganglion, we found a new type of burster for which the fast system is globally stable for all relevant fixed values of the slow variables. We describe how this burster works and speculate on its biological significance. Received: 14 July 1994 / Accepted in revised form: 25 October 1994  相似文献   

8.
Dietary polyunsaturated fatty acids (PUFAs) prevent ischemia-induced fatal cardiac arrhythmias in animals and probably in humans. This action results from inhibition of ion currents for Na+, Ca2+, and possibly other ions. To extend understanding of this protection we are seeking a possible binding site for the PUFAs on the alpha-subunit of the human cardiac Na+ channel, hH1alpha, transiently expressed in HEK293t cells. Three mutated single amino acid substitutions with lysine were made in the alpha-subunit at Domain 4-Segment 6 (D4-S6) for F1760, Y1767 and at D1-S6 for N406. These are in the putative sites of binding of local anesthetics and batrachotoxin, respectively. The mutants F1760K, Y1767K, and N406K, separately and to different extents, affected the current density, the steady-state inactivation potential, accelerated inactivation, delayed recovery from inactivation, and affected voltage-dependent block, but did not affect activation of the hH1alpha. It is essential to learn that single point mutations in D1-S6 and D4-S6 alone significantly modify the kinetics of human cardiac hH1alpha Na+ currents. The effects of PUFAs on these mutant channels will be the subject of subsequent reports.  相似文献   

9.
The effects of chemical injury with oxidizing agents on voltage-gated Na+ current (I(Na)) in differentiated NG108-15 neuronal cells were investigated in this study. In whole-cell patch-clamp recordings, the challenge of these cells with t-butyl hydroperoxide (t-BHP; 1 mM) decreased the peak amplitude of I(Na) with no modification in the current-voltage relationship. It caused a slowing of current inactivation, although there was no alteration in the activation time course of I(Na). Cell exposure to t-BHP also increased a non-inactivating I(Na) (I(Na(NI)) elicited by long-lasting ramp pulses. The t-BHP-induced increase of I(Na(NI)) was reversed by a further application of riluzole (10 microM) or oxcarbazepine (10 microM). When I(Na) was elicited by simulated waveforms of action potentials (APs), during exposure to t-BHP, the amplitude of this inward current was diminished, accompanied by a reduction in inactivation/deactivation rate and an increase in current fluctuations. Under current-clamp recordings, addition of t-BHP (0.3 mM) enhanced AP firing in combination with clustering-like activity and sub-threshold membrane oscillations. In the simulation study, when the fraction of non-inactivating Na(v) channels was elevated, the simulated window component of I(Na) in response to a long-lasting ramp pulse was reduced; however, the persistent I(Na) was markedly enhanced. Moreover, when simulated firing of APs was generated from a modeled neuron, changes of AP firing caused by the increased fraction of non-inactivating Na(v) channels used to mimic the t-BHP actions were similar to the experimental observations. Taken together, it is anticipated that the effects of oxidizing agents on I(Na(NI)) could be an important mechanism underlying their neurotoxic actions in neurons or neuroendocrine cells occurring in vivo.  相似文献   

10.
The Na+/H+ exchanger (NHE) extrudes intracellular H+ in exchange for Na+ in an electroneutral process. Of the 6 mammalian exchanger isoforms identified to date, the NHE-1 is believed to be the molecular homologue of the sarcolemma Na+/H+ transporter. The exchanger is activated primarily by a reduction in intracellular pH, although such activation is subject to modulation by a variety of endogenous mediators (catecholamines, thrombin, endothelin) through receptor-mediated mechanisms. A large body of animal studies using both in vitro and in vivo models indicates that the inhibition of the sarcolemma NHE-1 attenuates myocardial injury in ischemia and reperfusion. Cardioprotective effects of NHE-1 inhibition involve a reduced susceptibility to severe ventricular arrhythmia, augmentation of contractile function recovery, and limitation of infarction size during reperfusion. Such protection is likely to arise partly from attenuation of "Ca2+ overload" in ischemic cardiomyocytes, which has been causally linked with all these pathologic phenomena. A marked benefit that has been observed with cariporide (HOE-642) and its structurally related congener HOE-694 in patients with acute myocardial infarction and in cardiac surgery demonstrates that selective NHE-1 inhibitors represent a novel and effective class of cardioprotectors.  相似文献   

11.
12.
Hilgenberg LG  Su H  Gu H  O'Dowd DK  Smith MA 《Cell》2006,125(2):359-369
Agrin, through its interaction with the receptor tyrosine kinase MuSK, mediates accumulation of acetylcholine receptors (AChR) at the developing neuromuscular junction. Agrin has also been implicated in several functions in brain. However, the mechanism by which agrin exerts its effects in neural tissue is unknown. Here we present biochemical evidence that agrin binds to the alpha3 subunit of the Na+/K+-ATPase (NKA) in CNS neurons. Colocalization with agrin binding sites at synapses supports the hypothesis that the alpha3NKA is a neuronal agrin receptor. Agrin inhibition of alpha3NKA activity results in membrane depolarization and increased action potential frequency in cortical neurons in culture and acute slice. An agrin fragment that acts as a competitive antagonist depresses action potential frequency, showing that endogenous agrin regulates native alpha3NKA function. These data demonstrate that, through its interaction with the alpha3NKA, agrin regulates activity-dependent processes in neurons, providing a molecular framework for agrin action in the CNS.  相似文献   

13.
Investigation of the development of excitability has revealed that cells are often specialized at early stages to generate Ca(2+) transients. Studies of excitability have converged on the central role of Ca(2+) and K(+) channels in the plasmalemma that regulate Ca(2+) influx and have identified critical functions for receptor-activated channels in the endoplasmic reticulum that allow efflux of Ca(2+) from intracellular stores. The parallels between excitability in these two locations motivate future work, because comparison of their properties identifies shared attributes.  相似文献   

14.
Liquid biopsy is a relatively new entity. This non‐invasive technique provides real‐time information about a tumour. The liquid biopsy contains circulating tumour cells, cell‐free DNA and exosomes. The main indications for liquid biopsy include early diagnosis, screening, detection of minimal residual disease, designing personalised treatment and predicting biological behaviour of the tumour. In this review, we discuss various aspects of liquid biopsy and compare it with conventional biopsy.  相似文献   

15.
1. We compared the effect of a new antiarrhythmic compound, SUN 1165, on Na and Ca channels in papillary muscles and enzymatically dispersed single ventricular cells of guinea-pig. Action potential and contractile force in papillary muscle were measured by the conventional microelectrode technique and a strain gauge. The membrane currents were measured in internally perfused and voltage clamped cells by a single suction pipette technique. 2. In papillary muscles, SUN 1165 depressed the maximum rate of rise of action potential (Vmax) in a concentration dependent manner (IC30 = 1.7 X 10(-5) M) more markedly (about six times) than the contractile force. 3. In single ventricular cells, the Na current (INa) was reduced by the drug in a concentration dependent manner (IC30 = 9.1 X 10(-6) M). 4. It showed frequency-dependent block and the steady-state inactivation curve was shifted to more negative potentials. 5. The recovery of INa from inactivation was prolonged by SUN 1165. 6. The Ca current (ICa) was also blocked by the drug in a concentration dependent manner but much less than INa (IC30 = 5.5 X 10(-5) M). 7. These results suggested that SUN 1165 causes a selective inhibition of Na channels in guinea-pig ventricular cells at the antiarrhythmic concentrations.  相似文献   

16.
Degeneracy is ubiquitous across biological systems where structurally different elements can yield a similar outcome. Degeneracy is of particular interest in neuroscience too. On the one hand, degeneracy confers robustness to the nervous system and facilitates evolvability: Different elements provide a backup plan for the system in response to any perturbation or disturbance. On the other, a difficulty in the treatment of some neurological disorders such as chronic pain is explained in light of different elements all of which contribute to the pathological behavior of the system. Under these circumstances, targeting a specific element is ineffective because other elements can compensate for this modulation. Understanding degeneracy in the physiological context explains its beneficial role in the robustness of neural circuits. Likewise, understanding degeneracy in the pathological context opens new avenues of discovery to find more effective therapies.  相似文献   

17.
18.
In Na+- and K+-free solution, an inward-directed current can be detected in Xenopus oocytes, which is inhibited by cardic glycosides and activated by ATP. Therefore, it is assumed to be generated by the Na+, K+ pump. At negative membrane potentials, the pump current increases with more negative potentials and with increasing [H+] in the external medium. This current is not observed when Mg2+ instead of Ba2+ is the only divalent cation present in the bath medium, and it does not depend on whether Na+ or K+ is present internally. At 5 to 10 mM Na+ externally, maximum pump-generated current is obtained while no current can be detected in presence of physiological [Na+]. It is suggested that in low-Na+ and K+-free medium the Na+, K+ pump molecule can either form a conductive pathway that is permeable to Ba2+ or protons or operate in its conventional transport mode accepting Ba2+ as a K+ congener. A reversed pump mode or an electrogenic uncoupled Na+-efflux mode is excluded.  相似文献   

19.
Ouabain, aspecific inhibitor ofNa+-K+-ATPase,was coupled to epoxy agarose via a 13-atom spacer to make an affinitycolumn that specifically bindsNa+-K+-ATPase.Na+-K+-ATPasefrom rat and dog kidney was bound to the column and was eluted as afunction of enzyme conformation, altered by adding specificcombinations of ligands.Na+-K+-ATPasefrom both sources bound to the column in the presence of Na + ATP + Mgand in solutions containing 30 mM K. No binding was observed in thepresence of Na or Na + ATP. These experiments suggest thatNa+-K+-ATPasebinds to the column under the same conditions that it binds tountethered ouabain.Na+-K+-ATPasealready bound to the column was competitively eluted with excess freeNa + ouabain or with Na + ATP. The latter eluted active enzyme. Forcomparable amounts of boundNa+-K+-ATPase,Na + ouabain and Na + ATP eluted more rat than dogNa+-K+-ATPase,consistent with the lower affinity of the ratNa+-K+-ATPasefor ouabain. The ouabain-affinity column was used to purify activeNa+-K+-ATPasefrom rat kidney microsomes and rat adrenal glomerulosa cells. Thespecific activity of the kidney enzyme was increased from ~2 to 15 µmolPi · mg1 · min1.Na+-K+-ATPasepurified from glomerulosa cells that were prelabeled with [32P]orthophosphatewas phosphorylated on the -subunit, suggesting that these cellscontain a kinase that phosphorylatesNa+-K+-ATPase.

  相似文献   

20.
A new assay is described for rat (Na+,K+)-ATPase [EC 3.6.1.3] prepared from renal medullary or crude liver membranes. With ATP at 1 μm, initial rates of ouabain-sensitive decreases in substrate concentrations are followed by measuring diminished ATP-driven luciferin-luciferase light production. Under these conditions, using highly purified enzyme preparations, Na+ and K+ ions stimulate and inhibit initial ATP hydrolysis rates, respectively. Therefore, it is likely that the assay measures Na+-ATPase partial reactions of the pump. A monospecific polyclonal rabbit anti-rat pump antiserum blocks Na+-dependent ATPase measured with the luciferase-linked ATPase assay, whereas conventional assays of purified pump activity at 3.0 mm ATP fail to reveal immunochemical blockade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号