首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Eukaryotic 3'-->5' exonucleolytic activities are essential for a wide variety of reactions of RNA maturation and metabolism, including processing of rRNA, small nuclear RNA, and small nucleolar RNA, and mRNA decay. Two related but distinct forms of a complex containing 10 3'-->5' exonucleases, the exosome, are found in yeast nucleus and cytoplasm, respectively, and related complexes exist in human cells. Here we report on the characterization of the AtRrp41p, an Arabidopsis thaliana homolog of the Saccharomyces cerevisiae exosome subunit Rrp41p (Ski6p). Purified recombinant AtRrp41p displays a processive phosphorolytic exonuclease activity and requires a single-stranded poly(A) tail on a substrate RNA as a "loading pad." The expression of the Arabidopsis RRP41 cDNA in yeast rescues the 5.8 S rRNA processing and 3'-->5' mRNA degradation defects of the yeast ski6-100 mutant. However, neither of these defects can explain the conditional lethal phenotype of the ski6-100 strain. Importantly, AtRrp41p shares additional function(s) with the yeast Rrp41p which are essential for cell viability because it also rescues the rrp41 (ski6) null mutant. AtRrp41p is found predominantly in a high molecular mass complex in Arabidopsis and in yeast cells, and it interacts in vitro with the yeast Rrp44p and Rrp4p exosome subunits, suggesting that it can participate in evolutionarily conserved interactions that could be essential for the integrity of the exosome complex.  相似文献   

3.
4.
5.
Exoribonucleases function in the processing and degradation of a variety of RNAs in all organisms. These enzymes play a particularly important role in the maturation of rRNAs and in a quality-control pathway that degrades rRNA precursors upon inhibition of ribosome biogenesis. Strains with defects in 3'-5' exoribonucleolytic components of the RNA processing exosome accumulate polyadenylated precursor rRNAs that also arise in strains with ribosome biogenesis defects. These findings suggested that polyadenylation might target pre-rRNAs for degradation by the exosome. Here we report experiments that indicate a role for the 5'-3' exoribonuclease Rat1p and its associated protein Rai1p in the degradation of poly(A)(+) pre-rRNAs. Depletion of Rat1p enhances the amount of poly(A)(+) pre-rRNA that accumulates in strains deleted for the exosome subunit Rrp6p and decreases their 5' heterogeneity. Deletion of RAI1 results in the accumulation of poly(A)(+) pre-rRNAs, and inhibits Rat1p-dependent 5'-end processing and Rrp6p-dependent 3'-end processing of 5.8S rRNA. RAT1 and RAI1 mutations cause synergistic growth defects in the presence of rrp6-Delta, consistent with the interdependence of 5'-end and 3'-end processing pathways. These findings suggest that Rai1p may coordinate the 5'-end and 3'-end processing and degradation activities of Rat1p and the nuclear exosome.  相似文献   

6.
7.
Dis3p, a subunit of the exosome, interacts directly with Ran. To clarify the relationship between the exosome and the RanGTPase cycle, a series of temperature-sensitive Saccharomyces cerevisiae dis3 mutants were isolated and their 5.8S rRNA processing was compared with processing in strains with mutations in a S. cerevisiae Ran homologue, Gsp1p. In both dis3 and gsp1 mutants, 3' processing of 7S-to-5.8S rRNA was blocked at three identical sites in an allele-specific manner. In contrast, the 5' end of 5.8S rRNA was terminated normally in gsp1 and in dis3. Inhibition of 5.8S rRNA maturation in gsp1 was rescued by overexpression of nuclear exosome components Dis3p, Rrp4p, and Mtr4p, but not by a cytoplasmic exosome component, Ski2p. Furthermore, gsp1 and dis3 accumulated the 5'-A0 fragment of 35S pre-rRNA, which is also degraded by the exosome, and the level of 27S rRNA was reduced. Neither 5.8S rRNA intermediates nor 5'-A0 fragments were observed in mutants defective in the nucleocytoplasmic transport, indicating that Gsp1p regulates rRNA processing through Dis3p, independent of nucleocytoplasmic transport.  相似文献   

8.
A role for the exosome in the in vivo degradation of unstable mRNAs   总被引:1,自引:0,他引:1  
In mammals, the mRNAs encoding many proteins involved in inflammation bear destabilizing AU-rich elements (AREs) in the 3'-untranslated region. The exosome, a complex of 3' --> 5' exonucleases, is rate limiting in the destruction of such mRNAs in a mammalian in vitro system, but a role in vivo has not been demonstrated. The phenomenon of ARE-mediated degradation also occurs in the protist parasite Trypanosoma brucei. Messenger RNAs with 3'-untranslated region U-rich elements, which strongly resemble AREs, are extremely unstable in the trypanosome form that parasitizes mammals. The first step in degradation of these mRNAs in vivo is rapid destruction of the 3'-untranslated region; subsequently the mRNA is destroyed by exonucleases acting in both 5' --> 3' and 3' --> 5' directions. We here investigated the roles of three subunits of the trypanosome exosome complex, RRP45, RRP4, and CSL4, in this process, depleting the individual subunits in vivo by inducible RNA interference. RRP45 depletion, which probably disrupts exosome integrity, caused a delay in the onset of degradation of the very unstable RNAs, but did not affect degradation of more stable species. Depletion of RRP4 or CSL4 does not affect the stability of the residual exosome and did not change mRNA degradation kinetics. We conclude that the exosome is required for the initiation of rapid degradation of unstable mRNAs in trypanosomes.  相似文献   

9.
One of two general pathways of mRNA decay in the yeast Saccharomyces cerevisiae occurs by deadenylation followed by 3'-to-5' degradation of the mRNA body. Previous results have shown that this degradation requires components of the exosome and the Ski2p, Ski3p, and Ski8p proteins, which were originally identified due to their superkiller phenotype. In this work, we demonstrate that deletion of the SKI7 gene, which encodes a putative GTPase, also causes a defect in 3'-to-5' degradation of mRNA. Deletion of SKI7, like deletion of SKI2, SKI3, or SKI8, does not affect various RNA-processing reactions of the exosome. In addition, we show that a mutation in the SKI4 gene also causes a defect in 3'-to-5' mRNA degradation. We show that the SKI4 gene is identical to the CSL4 gene, which encodes a core component of the exosome. Interestingly, the ski4-1 allele contains a point mutation resulting in a mutation in the putative RNA binding domain of the Csl4p protein. This point mutation strongly affects mRNA degradation without affecting exosome function in rRNA or snRNA processing, 5' externally transcribed spacer (ETS) degradation, or viability. In contrast, the csl4-1 allele of the same gene affects rRNA processing but not 3'-to-5' mRNA degradation. We identify csl4-1 as resulting from a partial-loss-of-function mutation in the promoter of the CSL4 gene. These data indicate that the distinct functions of the exosome can be separated genetically and suggest that the RNA binding domain of Csl4p may have a specific function in mRNA degradation.  相似文献   

10.
The exosome complex of 3'-5' exonucleases participates in RNA maturation and quality control and can rapidly degrade RNA-protein complexes in vivo. However, the purified exosome showed weak in vitro activity, indicating that rapid RNA degradation requires activating cofactors. This work identifies a nuclear polyadenylation complex containing a known exosome cofactor, the RNA helicase Mtr4p; a poly(A) polymerase, Trf4p; and a zinc knuckle protein, Air2p. In vitro, the Trf4p/Air2p/Mtr4p polyadenylation complex (TRAMP) showed distributive RNA polyadenylation activity. The presence of the exosome suppressed poly(A) tail addition, while TRAMP stimulated exosome degradation through structured RNA substrates. In vivo analyses showed that TRAMP is required for polyadenylation and degradation of rRNA and snoRNA precursors that are characterized exosome substrates. Poly(A) tails stimulate RNA degradation in bacteria, suggesting that this is their ancestral function. We speculate that this function was maintained in eukaryotic nuclei, while cytoplasmic mRNA poly(A) tails acquired different roles in translation.  相似文献   

11.
12.
13.
Xue Z  Yuan H  Guo J  Liu Y 《Molecular cell》2012,46(3):299-310
Argonaute proteins are required for the biogenesis of some small RNAs (sRNAs), including the PIWI-interacting RNAs and some microRNAs. How Argonautes mediate maturation of sRNAs independent of their slicer activity is not clear. The maturation of the Neurospora microRNA-like sRNA, milR-1, requires the Argonaute protein QDE-2, Dicer, and QIP. Here, we reconstitute this Argonaute-dependent sRNA biogenesis pathway in vitro and discover that the RNA exosome is also required for milR-1 production. Our results demonstrate that QDE-2 mediates milR-1 maturation by recruiting exosome and QIP and by determining the size of milR-1. The exonuclease QIP first separates the QDE-2-bound pre-milR-1 duplex and then mediates 3' to 5' trimming and maturation of pre-milRNA together with exosome using a handover mechanism. In addition, exosome is also important for the decay of sRNAs. Together, our results establish a biochemical mechanism of an Argonaute-dependent sRNA biogenesis pathway and critical roles of exosome in sRNA processing.  相似文献   

14.
15.
The Saccharomyces cerevisiae protein Rrp43p co-purifies with four other 3'-->5' exoribonucleases in a complex that has been termed the exosome. Rrp43p itself is similar to prokaryotic RNase PH. Individual exosome subunits have been implicated in the 3' maturation of the 5.8S rRNA found in 60S ribosomes and the 3' degradation of mRNAs. However, instead of being deficient in 60S ribosomes, Rrp43p-depleted cells were deficient in 40S ribosomes. Pulse-chase and steady-state northern analyses of pre-RNA and rRNA levels revealed a significant delay in the synthesis of both 25S and 18S rRNAs, accompanied by the stable accumulation of 35S and 27S pre-rRNAs and the under-accumulation of 20S pre-rRNA. In addition, Rrp43p-depleted cells accumulated a 23S aberrant pre-rRNA and a fragment excised from the 5' ETS. Therefore, in addition to the maturation of 5.8S rRNA, Rrp43p is required for the maturation 18S and 25S rRNA.  相似文献   

16.
The biogenesis of a number of RNA species in eukaryotic cells requires 3' processing. To determine the enzymes responsible for these trimming events, we created yeast strains lacking specific 3' to 5' exonucleases. In this work, we describe the analysis of three members of the RNase D family of exonucleases (Rex1p, Rex2p and Rex3p). This work led to three important conclusions. First, each of these exonucleases is required for the processing of distinct RNAs. Specifically, Rex1p, Rex2p and Rex3p are required for 5S rRNA, U4 snRNA and MRP RNA trimming, respectively. Secondly, some 3' exonucleases are redundant with other exonucleases. Specifically, Rex1p and Rex2p function redundantly in 5.8S rRNA maturation, Rex1p, Rex2p and Rex3p are redundant for the processing of U5 snRNA and RNase P RNA, and Rex1p and the exonuclease Rrp6p have an unknown redundant essential function. Thirdly, the demonstration that the Rex proteins can affect reactions that have been attributed previously to the exosome complex indicates that an apparently simple processing step can be surprisingly complex with multiple exonucleases working sequentially in the same pathway.  相似文献   

17.
18.
Ribosome biogenesis is well described in Saccharomyces cerevisiae. In contrast only very little information is available on this pathway in plants. This study presents the characterization of five putative protein co-factors of ribosome biogenesis in Arabidopsis thaliana, namely Rrp5, Pwp2, Nob1, Enp1 and Noc4. The characterization of the proteins in respect to localization, enzymatic activity and association with pre-ribosomal complexes is shown. Additionally, analyses of T-DNA insertion mutants aimed to reveal an involvement of the plant co-factors in ribosome biogenesis. The investigated proteins localize mainly to the nucleolus or the nucleus, and atEnp1 and atNob1 co-migrate with 40S pre-ribosomal complexes. The analysis of T-DNA insertion lines revealed that all proteins are essential in Arabidopsis thaliana and mutant plants show alterations of rRNA intermediate abundance already in the heterozygous state. The most significant alteration was observed in the NOB1 T-DNA insertion line where the P-A3 fragment, a 23S-like rRNA precursor, accumulated. The transmission of the T-DNA through the male and female gametophyte was strongly inhibited indicating a high importance of ribosome co-factor genes in the haploid stages of plant development. Additionally impaired embryogenesis was observed in some mutant plant lines. All results support an involvement of the analyzed proteins in ribosome biogenesis but differences in rRNA processing, gametophyte and embryo development suggested an alternative regulation in plants.  相似文献   

19.
20.
Proteomics analyses of human nucleoli provided molecular bases for an understanding of the multiple functions fulfilled by these nuclear domains. However, the biological roles of about 100 of the identified proteins are unpredictable. The present study describes the functional characterization of one of these proteins, ISG20L2. We demonstrate that ISG20L2 is a 3' to 5' exoribonuclease involved in ribosome biogenesis at the level of 5.8 S rRNA maturation, more specifically in the processing of the 12 S precursor rRNA. The use of truncated forms of ISG20L2 demonstrated that its N-terminal half promotes the nucleolar localization and suggested that its C-terminal half bears the exoribonuclease activity. Identification of the binding partners of ISG20L2 confirmed its involvement in the biogenesis of the large ribosomal subunit. These results strongly support the notion that, in human, as it was demonstrated in yeast, 5.8 S rRNA maturation requires several proteins in addition to the exosome complex. Furthermore this observation greatly sustains the idea that the extremely conserved need for correctly processed rRNAs in vertebrates and yeast is achieved by close but different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号