首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular conducted responses are believed to play a central role in controlling the microcirculatory blood flow. The responses most likely spread through gap junctions in the vascular wall. At present, four different connexins (Cx) have been detected in the renal vasculature, but their role in transmission of conducted vasoconstrictor signals in the preglomerular arterioles is unknown. Connexin mimetic peptides were previously reported to target and inhibit specific connexins. We, therefore, investigated whether conducted vasoconstriction in isolated renal arterioles could be blocked by the use of mimetic peptides directed against one or more connexins. Preglomerular resistance vessels were microdissected from kidneys of Sprague-Dawley rats and loaded with fura 2. The vessels were stimulated locally by applying electrical current through a micropipette, and the conducted calcium response was measured 500 mum from the site of stimulation. Application of connexin mimetic peptides directed against Cx40, 37/43, 45, or a cocktail with equimolar amounts of each, did not inhibit the propagated response, whereas the nonselective gap junction uncoupler carbenoxolone completely abolished the propagated response. However, the connexin mimetic peptides were able to reduce dye coupling between rat aorta endothelial cells shown to express primarily Cx40. In conclusion, we did not observe any attenuating effects on conducted calcium responses in isolated rat interlobular arteries when exposed to connexin mimetic peptides directed against Cx40, 37/43, or 45. Further studies are needed to determine whether conducted vasoconstriction is mediated via previously undescribed pathways.  相似文献   

2.
Gap junctions mediate electrical synaptic transmission between neurons. While the actions of neurotransmitter modulators on the conductance of gap junctions have been extensively documented, increasing evidence indicates they can also be influenced by the ongoing activity of neural networks, in most cases via local interactions with nearby glutamatergic synapses. We review here early evidence for the existence of activity-dependent regulatory mechanisms as well recent examples reported in mammalian brain. The ubiquitous distribution of both neuronal connexins and the molecules involved suggest this phenomenon is widespread and represents a property of electrical transmission in general.  相似文献   

3.
Connexins have been known to be the protein building blocks of gap junctions and mediate cell-cell communication. In contrast to the conventional dogma, recent evidence suggests that in addition to forming gap junction channels, connexins possess gap junction-independent functions. One important gap junction-independent function for connexins is to serve as the major functional component for hemichannels, the un-apposed halves of gap junctions. Hemichannels, as independent functional units, play roles that are different from that of gap junctions in the cell. The other functions of connexins appear to be gap junction- and hemichannel-independent. Published studies implicate the latter functions of connexins in cell growth, differentiation, tumorigenicity, injury, and apoptosis, although the mechanistic aspects of these actions remain largely unknown. In this review, gap junction- and hemichannel-independent functions of connexins are summarized, and the molecular mechanisms underlying these connexin functions are speculated and discussed.  相似文献   

4.
Connexins have been known to be the protein building blocks of gap junctions and mediate cell-cell communication. In contrast to the conventional dogma, recent evidence suggests that in addition to forming gap junction channels, connexins possess gap junction-independent functions. One important gap junction-independent function for connexins is to serve as the major functional component for hemichannels, the un-apposed halves of gap junctions. Hemichannels, as independent functional units, play roles that are different from that of gap junctions in the cell. The other functions of connexins appear to be gap junction- and hemichannel-independent. Published studies implicate the latter functions of connexins in cell growth, differentiation, tumorigenicity, injury, and apoptosis, although the mechanistic aspects of these actions remain largely unknown. In this review, gap junction- and hemichannel-independent functions of connexins are summarized, and the molecular mechanisms underlying these connexin functions are speculated and discussed.  相似文献   

5.
Intercellular communication via gap junctions plays a critical role in numerous cellular processes, including the control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are aggregates of intercellular channels that enable adjacent cells in solid tissues to directly exchange ions and small molecules. These channels are formed by a family of integral membrane proteins called connexins, of which the best studied is connexin43. Connexins have a high turnover rate in most tissue types, and degradation of connexins is considered to be a tightly regulated process. Post-translational modification of connexins by ubiquitin is emerging as an important event in the regulation of connexin degradation. Ubiquitination is involved in endoplasmic reticulum-associated degradation of connexins as well as in trafficking of connexins to lysosomes. At both the endoplasmic reticulum and the plasma membrane, ubiquitination of connexins is strongly affected by changes in the extracellular environment. There is increasing evidence that the regulation of connexin ubiquitination might be an important mechanism for rapidly modifying the level of functional gap junctions at the plasma membrane, under both normal and pathological conditions. This review discusses the current knowledge about the regulation of intercellular communication via gap junctions by ubiquitination of connexins.  相似文献   

6.
Gap junctions have traditionally been described as transmembrane channels that facilitate intercellular communication via the passage of small molecules. Connexins, the basic building blocks of gap junctions, are expressed in most mammalian tissues including the developing and adult central nervous system. During brain development, connexins are temporally and spatially regulated suggesting they play an important role in the proper formation of the central nervous system. In the current study, connexins 32 and 43 were overexpressed in PC12 cells to determine whether connexins are involved in neuronal differentiation. Both connexin 32 and 43 were appropriately trafficked to the cell membrane following overexpression and resulted in the formation of functional gap junctions. Connexin overexpression was found to cause enhanced neurite outgrowth in PC12 cells treated with nerve growth factor to initiate neuritogenesis. Surprisingly, however, enhanced neurite outgrowth was found to be the consequence of functional hemichannel formation as opposed to traditional intercellular communication. Additional analysis revealed that ATP was released into the media likely through hemichannels and acted on purinergic receptors to cause enhanced neurite outgrowth. Collectively, the results of the current study suggest that connexins may play an important role in neuronal differentiation by non-traditional mechanisms.  相似文献   

7.
This protocol details the generation of acellular, yet biofunctional, renal extracellular matrix (ECM) scaffolds that are useful as small-scale model substrates for organ-scale tissue development. Sprague Dawley rat kidneys are cannulated by inserting a catheter into the renal artery and perfused with a series of low-concentration detergents (Triton X-100 and sodium dodecyl sulfate (SDS)) over 26 hr to derive intact, whole-kidney scaffolds with intact perfusable vasculature, glomeruli, and renal tubules. Following decellularization, the renal scaffold is placed inside a custom-designed perfusion bioreactor vessel, and the catheterized renal artery is connected to a perfusion circuit consisting of: a peristaltic pump; tubing; and optional probes for pH, dissolved oxygen, and pressure. After sterilizing the scaffold with peracetic acid and ethanol, and balancing the pH (7.4), the kidney scaffold is prepared for seeding via perfusion of culture medium within a large-capacity incubator maintained at 37 °C and 5% CO2. Forty million renal cortical tubular epithelial (RCTE) cells are injected through the renal artery, and rapidly perfused through the scaffold under high flow (25 ml/min) and pressure (~230 mmHg) for 15 min before reducing the flow to a physiological rate (4 ml/min). RCTE cells primarily populate the tubular ECM niche within the renal cortex, proliferate, and form tubular epithelial structures over seven days of perfusion culture. A 44 µM resazurin solution in culture medium is perfused through the kidney for 1 hr during medium exchanges to provide a fluorometric, redox-based metabolic assessment of cell viability and proliferation during tubulogenesis. The kidney perfusion bioreactor permits non-invasive sampling of medium for biochemical assessment, and multiple inlet ports allow alternative retrograde seeding through the renal vein or ureter. These protocols can be used to recellularize kidney scaffolds with a variety of cell types, including vascular endothelial, tubular epithelial, and stromal fibroblasts, for rapid evaluation within this system.  相似文献   

8.
Gap junction-mediated intercellular communication in the immune system   总被引:4,自引:0,他引:4  
Immune cells are usually considered non-attached blood cells, which would exclude the formation of gap junctions. This is a misconception since many immune cells express connexin 43 (Cx43) and other connexins and are often residing in tissue. The role of gap junctions is largely ignored by immunologists as is the immune system in the field of gap junction research. Here, the current knowledge of the distribution of connexins and the function of gap junctions in the immune system is discussed. Gap junctions appear to play many roles in antibody productions and specific immune responses and may be important in sensing danger in tissue by the immune system. Gap junctions not only transfer electrical and metabolical but also immunological information in the form of peptides for a process called cross-presentation. This is essential for proper immune responses to viruses and possibly tumours. Until now only 40 research papers on gap junctions in the immune system appeared and this will almost certainly expand with the increased mutual interest between the fields of immunology and gap junction research.  相似文献   

9.
Gap junctions are considered to serve a similar function in all multicellular animals (Metazoa). Two unrelated protein families are involved in this function: connexins, which are found only in chordates, and pannexins, which are present in the genomes of both chordates and invertebrates. Recent sequence data from different organisms show important exceptions to this simplified scheme. It looks as if Chordate lancelet has only pannexins and no connexins in its genome. New data indicate that some metazoans have neither connexins nor pannexins and use other unidentified proteins to form gap junctions.  相似文献   

10.
Gap junctions are plasma membrane spatial microdomains constructed of assemblies of channel proteins called connexins in vertebrates and innexins in invertebrates. The channels provide direct intercellular communication pathways allowing rapid exchange of ions and metabolites up to ~1 kD in size. Approximately 20 connexins are identified in the human or mouse genome, and orthologues are increasingly characterized in other vertebrates. Most cell types express multiple connexin isoforms, making likely the construction of a spectrum of heteromeric hemichannels and heterotypic gap junctions that could provide a structural basis for the charge and size selectivity of these intercellular channels. The precise nature of the potential signalling information traversing junctions in physiologically defined situations remains elusive, but extensive progress has been made in elucidating how connexins are assembled into gap junctions. Also, participation of gap junction hemichannels in the propagation of calcium waves via an extracellular purinergic pathway is emerging. Connexin mutations have been identified in a number of genetically inherited channel communication-opathies. These are detected in connexin 32 in Charcot Marie Tooth-X linked disease, in connexins 26 and 30 in deafness and skin diseases, and in connexins 46 and 50 in hereditary cataracts. Biochemical approaches indicate that many of the mutated connexins are mistargeted to gap junctions and/or fail to oligomerize correctly into hemichannels. Genetic ablation approaches are helping to map out a connexin code and point to specific connexins being required for cell growth and differentiation as well as underwriting basic intercellular communication.  相似文献   

11.
Calcium dynamics in the epidermis play a crucial role in barrier homeostasis and keratinocyte differentiation. We have recently suggested that the electro-physiological responses of the keratinocyte represent the frontier of the skin sensory system for environmental stimuli. In the present study, we have evaluated the responses of proliferating and differentiated human keratinocytes to mechanical stress by measuring the intracellular calcium level. Before differentiation, mechanical stress induces a calcium wave over a limited area; this is completely blocked by apyrase, which degrades ATP. In the case of differentiated keratinocytes, the calcium wave propagates over a larger area. Application of apyrase does not completely inhibit this wave. Thus, in differentiated cells, the induction of calcium waves might involve not only ATP, but also another factor. Immunohistochemical studies indicate that connexins 26 and 43, both components of gap junctions, are expressed in the cell membrane of differentiated keratinocytes. Application of octanol or carbenxolone, which block gap junctions, significantly reduces calcium wave propagation in differentiated keratinocytes. Thus, signaling via gap junctions might be involved in the induction of calcium waves in response to mechanical stress at the upper layer of the epidermis.  相似文献   

12.
The protein constituents of gap junctions, connexins, have a rapid basal rate of degradation even after transport to the cell surface. We have used cell surface biotinylation to label gap junction-unassembled plasma membrane pools of connexin43 (Cx43) and show that their degradation is inhibited by mild hyperthermia, oxidative stress, and proteasome inhibitors. Cytosolic stress does not perturb endocytosis of biotinylated Cx43, but instead it seems to interfere with its targeting and/or transport to the lysosome, possibly by increasing the level of unfolded protein in the cytosol. This allows more Cx43 molecules to recycle to the cell surface, where they are assembled into long-lived, functional gap junctions in otherwise gap junction assembly-inefficient cells. Cytosolic stress also slowed degradation of biotinylated Cx43 in gap junction assembly-efficient normal rat kidney fibroblasts, and reduced the rate at which gap junctions disappeared from cell interfaces under conditions that blocked transport of nascent connexin molecules to the plasma membrane. These data demonstrate that degradation from the cell surface can be down-regulated by physiologically relevant forms of stress. For connexins, this may serve to enhance or preserve gap junction-mediated intercellular communication even under conditions in which protein synthesis and/or intracellular transport are compromised.  相似文献   

13.
Gap junctions: structure and function (Review)   总被引:16,自引:0,他引:16  
Gap junctions are plasma membrane spatial microdomains constructed of assemblies of channel proteins called connexins in vertebrates and innexins in invertebrates. The channels provide direct intercellular communication pathways allowing rapid exchange of ions and metabolites up to approximately 1 kD in size. Approximately 20 connexins are identified in the human or mouse genome, and orthologues are increasingly characterized in other vertebrates. Most cell types express multiple connexin isoforms, making likely the construction of a spectrum of heteromeric hemichannels and heterotypic gap junctions that could provide a structural basis for the charge and size selectivity of these intercellular channels. The precise nature of the potential signalling information traversing junctions in physiologically defined situations remains elusive, but extensive progress has been made in elucidating how connexins are assembled into gap junctions. Also, participation of gap junction hemichannels in the propagation of calcium waves via an extracellular purinergic pathway is emerging. Connexin mutations have been identified in a number of genetically inherited channel communication-opathies. These are detected in connexin 32 in Charcot Marie Tooth-X linked disease, in connexins 26 and 30 in deafness and skin diseases, and in connexins 46 and 50 in hereditary cataracts. Biochemical approaches indicate that many of the mutated connexins are mistargeted to gap junctions and/or fail to oligomerize correctly into hemichannels. Genetic ablation approaches are helping to map out a connexin code and point to specific connexins being required for cell growth and differentiation as well as underwriting basic intercellular communication.  相似文献   

14.
Cell proliferation is an important process for reproduction, growth and renewal of living cells and occurs in several situations during life. Cell proliferation is present in all the steps of carcinogenesis, initiation, promotion and progression. Gap junctions are the only specialization of cell membranes that allows communication between adjacent cells. They are known to contribute to tissue homeostasis and are composed of transmembrane proteins called “connexins.” These junctions are also known to be involved in cell proliferation control. The roles of gap junctions and connexins in cell proliferation are complex and still under investigation. Since pioneer studies by Loewenstein, it is known that neoplastic cells lack communicating junctions. They do not communicate with their neighbors or with non-neoplastic cells from the surrounding area. There are many studies and review articles dedicated to neoplastic tissues. The aim of this review is to present evidence on the roles of gap junctions and connexins in non-neoplastic processes in which cell proliferation is involved.  相似文献   

15.
16.
Two isolated-perfused kidney methods were used to study the effects of hypothermic preservation on renal function in dog kidneys. The isolated-machine-perfused kidney (IMPK) used an in vitro perfusion technique--the perfusate was a Krebs-bicarbonate type delivered to the kidney at 37 degrees C by a mechanical pump at a constant pressure (100 mm Hg). The isolated-blood-perfused kidney (IBPK) utilized transplantation of the preserved kidney to the femoral vasculature. Renal function (urine analysis) was determined over a 1-hr reperfusion interval and included GFR (creatinine clearance), urine formation, and Na+ reabsorption. Kidneys preserved for only 24 hr by cold storage in either Collins'--C3 solution or in hypotonic citrate and kidneys hypothermically perfused for 24 hr demonstrated greater retention of renal function when reperfused by blood (IBPK) than with the in vitro perfusate (IMPK). The GFR was reduced by 38-58% when tested with the IBPK, but by 80-90% when tested with the IMPK. Na+ reabsorption was normal (97%) with blood reperfusion but was reduced to 36-50% in cold-stored kidneys and 82% in hypothermically perfused kidneys determined by machine reperfusion (IMPK). However, kidneys perfused for 72 hr demonstrated more similar renal functions when tested by either IMPK or IBPK. GFR was reduced to 20% (IBPK) and 11% (IMPK) and Na+ reabsorption averaged 76-85% (IBPK or IMPK). These results suggest that either reperfusion method is suitable for determining the effects of renal preservation on kidney function in kidneys preserved for 72 hr but, for short-term preserved kidneys (24 hr), the IBPK model may be preferred.  相似文献   

17.
Gop junctions are cell junctions found between most cells and tissues. They contain membrane channels that mediate the cell-to-cell diffusion of ions, metabolites, and small cell signaling molecules. Cell-cell communication mediated by gap junctions has been proposed to have a variety of functions, including roles in regulating events in development, cell differentiation, and cell growth and proliferation. The analysis of these possibilities has been confounded by the fact that there are over a dozen connexin genes encoding polypeptides that make up vertebrate gap junctions. This complexity, coupled with the fact that most cells express multiple connexin isotypes, likely explains why recent studies using reverse genetic and genetic approaches to disrupt connexin gene function have yielded only limited insights into the physiological roles of gap junctions. Nevertheless, studies in vivo and in vitro together have provided evidence for gap junctions being involved in the regulation of cell metabolism, growth, and differentiation in restricted cell and tissue types. Surprisingly, studies in invertebrates suggest that their gap junctions are encoded not by connexins, but by a family of proteins referred to as innexins. Analysis of various Drosophila and C. elegans mutants suggest that innexins may be functional homologs to the connexins. However, whether innexins are the elusive invertebrate gap junction proteins or, rather, accessory proteins that facilitate gap junction formation remains an open question. Given the rapid progress being made in the cloning and functional analysis of gap junctions in many diverse species, confusion and difficulties with nomenclature are coming to a head in this rapidly expanding field. It may be timely to form a Nomenclature Committee to establish a uniform classification scheme for naming gap junction proteins.  相似文献   

18.
Post-translational modifications of connexins play an important role in the regulation of gap junction and hemichannel permeability. The prerequisite for the formation of functional gap junction channels is the assembly of connexin proteins into hemichannels and their insertion into the membrane. Hemichannels can affect cellular processes by enabling the passage of signaling molecules between the intracellular and extracellular space. For the intercellular communication hemichannels from one cell have to dock to its counterparts on the opposing membrane of an adjacent cell to allow the transmission of signals via gap junctions from one cell to the other. The controlled opening of hemichannels and gating properties of complete gap junctions can be regulated via post-translational modifications of connexins. Not only channel gating, but also connexin trafficking and assembly into hemichannels can be affected by post-translational changes. Recent investigations have shown that connexins can be modified by phosphorylation/dephosphorylation, redox-related changes including effects of nitric oxide (NO), hydrogen sulfide (H2S) or carbon monoxide (CO), acetylation, methylation or ubiquitination. Most of the connexin isoforms are known to be phosphorylated, e.g. Cx43, one of the most studied connexin at all, has 21 reported phosphorylation sites. In this review, we provide an overview about the current knowledge and relevant research of responsible kinases, connexin phosphorylation sites and reported effects on gap junction and hemichannel regulation. Regarding the effects of oxidants we discuss the role of NO in different cell types and tissues and recent studies about modifications of connexins by CO and H2S.  相似文献   

19.
Gap junctions and neurological disorders of the central nervous system   总被引:17,自引:0,他引:17  
Gap junctions are intercellular channels which directly connect the cytoplasm between neighboring cells. In the central nervous system (CNS) various kinds of cells are coupled by gap junctions, which play an important role in maintaining normal function. Neuronal gap junctions are involved in electrical coupling and may also contribute to the recovery of function after cell injury. Astrocytes are involved in the pathology of most neuronal disorders, including brain ischemia, Alzheimer's disease and epilepsy. In the pathology of brain tumors, gap junctions may be related to the degree of malignancy and metastasis. However, the role of connexins, gap junctions and hemichannels in the pathology of the diseases in the CNS is still ambiguous. Of increasing importance is the unraveling of the function of gap junctions in the neural cell network, involving neurons, astrocytes, microglia and oligodendrocytes. A better understanding of the role of gap junctions may contribute to the development of new therapeutic approaches to treating diseases of the CNS.  相似文献   

20.
Gap junctions play a critical role in hearing and mutations in connexin genes cause a high incidence of human deafness. Pathogenesis mainly occurs in the cochlea, where gap junctions form extensive networks between non-sensory cells that can be divided into two independent gap junction systems, the epithelial cell gap junction system and the connective tissue cell gap junction system. At least four different connexins have been reported to be present in the mammalian inner ear, and gap junctions are thought to provide a route for recycling potassium ions that pass through the sensory cells during the mechanosensory transduction process back to the endolymph. Here we review the cochlear gap junction networks and their hypothesized role in potassium ion recycling mechanism, pharmacological and physiological gating of cochlear connexins, animal models harboring connexin mutations and functional studies of mutant channels that cause human deafness. These studies elucidate gap junction functions in the cochlea and also provide insight for understanding the pathogenesis of this common hereditary deafness induced by connexin mutations. H.-B. Zhao, T. Kikuchi, A. Ngezahayo, T. W. White contributed equally to this article  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号