首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cao Y  Fujiwara M  Nikaido M  Okada N  Hasegawa M 《Gene》2000,259(1-2):149-158
Extensive phylogenetic analyses of the updated sequence data of mammalian mitochondrial genomes were carried out using the maximum likelihood method in order to resolve deep branchings in eutherian evolution. The divergence times in the mammalian tree were estimated by a relaxed molecular clock of the mitochondrial proteins calibrated with multiple references. A Chiroptera/Eulipotyphla (i.e. bat/mole) clade and a close relationship of this clade to Fereuungulata (Carnivora+Perissodactyla+Cetartiodactyla) were reconfirmed with high statistical significance. However, a support for a monophyly of Fereuungulata relative to the Chiroptera/Eulipotyphla clade was fragile, and we suggest that the three branchings among Carnivora, Perissodactyla, Cetartiodactyla and Chiroptera/Eulipotyphla occurred successively in a short time period, estimated to be approximately 77Myr BP. The Chiroptera/Eulipotyphla divergence was estimated to roughly coincide with the Cretaceous-Tertiary boundary (65Myr BP). The monophyly of Rodentia, the Lagomorpha/Rodentia clade (traditionally called Glires), and the Afrotheria/Xenarthra clade were preferred over alternative relationships, but the supports of these clades were not strong enough to exclude other possibilities. Although several super-order taxa of eutherians were strongly supported by the analyses of the mitochondrial genome data, the branching order in the deepest part of the eutherian tree remained ambiguous from the data presently available.  相似文献   

2.
Complete sequences of mitochondrial DNA (mtDNA) are useful for the reconstruction of phylogenetic trees of mammals and, in particular, for inferring higher-order relationships in mammals. In this study, we determined the complete sequence (16,705 bp) of the mtDNA of a Japanese megabat, the Ryukyu flying fox (Pteropus dasymallus). We analyzed this sequence phylogenetically by comparing it with the complete sequence of mtDNAs of 35 mammals in an effort to reevaluate the enigmatic relationship between Megachiroptera and Microchiroptera and the relationships between them and other mammals. Maximum-likelihood analysis of 12 concatenated mitochondrial proteins from 36 mammals strongly suggested the monophyly of the order Chiroptera and its close relationship to Fereuungulata (Carnivora + Perissodactyla + Cetartiodactyla). We estimated that megabats and microbats diverged approximately 58 MyrBP and discussed the origin and early evolution of Chiroptera based on our findings. Received: 28 January 2000 / Accepted: 30 June 2000  相似文献   

3.
A data set of complete mitochondrial cytochrome b and 12S rDNA sequences is presented here for 17 representatives of Artiodactyla and Cetacea, together with potential outgroups (two Perissodactyla, two Carnivora, two Tethytheria, four Rodentia, and two Marsupialia). We include seven sequences not previously published from Hippopotamidae (Ancodonta) and Camelidae (Tylopoda), yielding a total of nearly 2.1 kb for both genes combined. Distance and parsimony analyses of each gene indicate that 11 clades are well supported, including the artiodactyl taxa Pecora, Ruminantia (with low 12S rRNA support), Tylopoda, Suina, and Ancodonta, as well as Cetacea, Perissodactyla, Carnivora, Tethytheria, Muridae, and Caviomorpha. Neither the cytochrome b nor the 12S rDNA genes resolve the relationships between these major clades. The combined analysis of the two genes suggests a monophyletic Cetacea +Artiodactyla clade (defined as "Cetartiodactyla"), whereas Perissodactyla, Carnivora, and Tethytheria fall outside this clade. Perissodactyla could represent the sister taxon of Cetartiodactyla, as deduced from resampling studies among outgroup lineages. Cetartiodactyla includes five major lineages: Ruminantia, Tylopoda, Suina, Ancodonta, and Cetacea, among which the phylogenetic relationships are not resolved. Thus, Suiformes do not appear to be monophyletic, justifying their split into the Suina and Ancodonta infraorders. An association between Cetacea and Hippopotamidae is supported by the cytochrome b gene but not by the 12S rRNA gene. Calculation of divergence dates suggests that the Cetartiodactyla could have diverged from other Ferungulata about 60 MYA.   相似文献   

4.
The complete mitochondrial genomes of two microbats, the horseshoe bat Rhinolophus pumilus, and the Japanese pipistrelle Pipistrellus abramus, and that of an insectivore, the long-clawed shrew Sorex unguiculatus, were sequenced and analyzed phylogenetically by a maximum likelihood method in an effort to enhance our understanding of mammalian evolution. Our analysis suggested that (1) a sister relationship exists between moles and shrews, which form an eulipotyphlan clade; (2) chiropterans have a sister-relationship with eulipotyphlans; and (3) the Eulipotyphla/Chiroptera clade is closely related to fereuungulates (Cetartiodactyla, Perissodactyla and Carnivora). Divergence times on the mammalian tree were estimated from consideration of a relaxed molecular clock, the amino acid sequences of 12 concatenated mitochondrial proteins and multiple reference criteria. Moles and shrews were estimated to have diverged approximately 48 MyrBP, and bats and eulipotyphlans to have diverged 68 MyrBP. Recent phylogenetic controversy over the polyphyly of microbats, the monophyly of rodents, and the position of hedgehogs is also examined. Received: 21 December 2000 / Accepted: 16 February 2001  相似文献   

5.
Zhou X  Xu S  Xu J  Chen B  Zhou K  Yang G 《Systematic biology》2012,61(1):150-164
Although great progress has been made in resolving the relationships of placental mammals, the position of several clades in Laurasiatheria remain controversial. In this study, we performed a phylogenetic analysis of 97 orthologs (46,152 bp) for 15 taxa, representing all laurasiatherian orders. Additionally, phylogenetic trees of laurasiatherian mammals with draft genome sequences were reconstructed based on 1608 exons (2,175,102 bp). Our reconstructions resolve the interordinal relationships within Laurasiatheria and corroborate the clades Scrotifera, Fereuungulata, and Cetartiodactyla. Furthermore, we tested alternative topologies within Laurasiatheria, and among alternatives for the phylogenetic position of Perissodactyla, a sister-group relationship with Cetartiodactyla receives the highest support. Thus, Pegasoferae (Perissodactyla + Carnivora + Pholidota + Chiroptera) does not appear to be a natural group. Divergence time estimates from these genes were compared with published estimates for splits within Laurasiatheria. Our estimates were similar to those of several studies and suggest that the divergences among these orders occurred within just a few million years.  相似文献   

6.
The sequence (16,829 nt) of the complete mitochondrial genome of the greater Indian rhinoceros, Rhinoceros unicornis, was determined. Like other perissodactyls studied (horse and donkey) the rhinoceros demonstrates length variation (heteroplasmy) associated with different numbers of repetitive motifs in the control region. The 16,829-nt variety of the molecule includes 36 identical control region motifs. The evolution of individual peptide-coding genes was examined by comparison with a distantly related perissodactyl, the horse, and the relationships among the orders Carnivora, Perissodactyla, and Artiodactyla (+ Cetacea) were examined on the basis of concatenated sequences of 12 mitochondrial peptide-coding genes. The phylogenetic analyses grouped Carnivora, Perissodactyla, and Artiodactyla (+ Cetacea) into a superordinal clade and within this clade a sister group relationship was recognized between Carnivora and Perissodactyla to the exclusion of Artiodactyla (+ Cetacea) . On the basis of the molecular difference between the rhinoceros and the horse and by applying as a reference to Artiodactyl/Cetacean divergence set at 60 million years ago (MYA), the evolutionary divergence between the families Rhinocerotidae and Equidae was dated to approximately 50 MYA.   相似文献   

7.
The remarkable antiquity, diversity, and significance in the ecology and evolution of Cetartiodactyla have inspired numerous attempts to resolve their phylogenetic relationships. However, previous analyses based on limited samples of nuclear genes or mitochondrial DNA sequences have generated results that were either inconsistent with one another, weakly supported, or highly sensitive to analytical conditions. Here, we present strongly supported results based upon over 1.4 Mb of an aligned DNA sequence matrix from 110 single-copy nuclear protein-coding genes of 21 Cetartiodactyla species, which represent major Cetartiodactyla lineages, and three species of Perissodactyla and Carnivora as outgroups. Phylogenetic analysis of this newly developed genomic sequence data using a codon-based model and recently developed models of the rate autocorrelation resolved the phylogenetic relationships of the major cetartiodactylan lineages and of those lineages with a high degree of confidence. Cetacea was found to nest within Artiodactyla as the sister group of Hippopotamidae, and Tylopoda was corroborated as the sole base clade of Cetartiodactyla. Within Cetacea, the monophyletic status of Odontoceti relative to Mysticeti, the basal position of Physeteroidea in Odontoceti, the non-monophyly of the river dolphins, and the sister relationship between Delphinidae and Monodontidae + Phocoenidae were strongly supported. In particular, the groups of Tursiops (bottlenose dolphins) and Stenella (spotted dolphins) were validated as unnatural groups. Additionally, a very narrow time frame of ∼3 My (million years) was found for the rapid diversification of delphinids in the late Miocene, which made it difficult to resolve the phylogenetic relationships within the Delphinidae, especially for previous studies with limited data sets. The present study provides a statistically well-supported phylogenetic framework of Cetartiodactyla, which represents an important step toward ending some of the often-heated, century-long debate on their evolution.  相似文献   

8.
We sequenced the protamine P1 gene (ca. 450 bp) from 20 bats (order Chiroptera) and the flying lemur (order Dermoptera). We compared these sequences with published sequences from 19 other mammals representing seven orders (Artiodactyla, Carnivora, Cetacea, Perissodactyla, Primates, Proboscidea, and Rodentia) to assess structure, base compositional bias, and phylogenetic utility. Approximately 80% of second codon positions were guanine, resulting in protamine proteins containing a high frequency of arginine residues. Our data indicate that codon usage for arginine differs among higher mammalian taxa. Parsimony analysis of 40 species representing nine orders produced a well-resolved tree in which most nodes were supported strongly, except at the lowest taxonomic levels (e.g., within Artiodactyla and Vespertilionidae). These data support monophyly of several taxa proposed by morphologic and molecular studies (all nine orders: Laurasiatheria, Cetartiodactytla, Yangochiroptera, Noctilionoidea, Rhinolophoidea, Vespertilionoidea, Phyllostomidae, Natalidae, and Vespertilionidae) and, in agreement with recent molecular studies, reject monophyly of Archonta, Volitantia, and Microchiroptera. Bats were sister to a clade containing Perissodactyla, Carnivora, and Cetartiodactyla, and, although not unequivocally, rhinolophoid bats (traditional microchiropterans) were sister to megachiropterans. Sequences of the protamine P1 gene are useful for resolving relationships at and above the familial level in bats, and generally within and among mammalian orders, but with some drawbacks. The coding and intervening sequences are small, producing few phylogenetically informative characters, and aligning the intron is difficult, even among closely related families. Given these caveats, the protamine P1 gene may be important to future systematic studies because its functional and evolutionary constraints differ from other genes currently used in systematic studies.  相似文献   

9.
Despite great progress over the past decade, some portions of the mammalian tree of life remain unresolved. In particular, relationships among the different orders included within the supraordinal group Laurasiatheria have been proven difficult to determine, and have received poor support in the vast majority of phylogenomic studies of mammalian systematics. We estimated interordinal relationships within Laurasiatheria using sequence data from 3733 protein-coding genes. Our study included data from from 11 placental mammals, corresponding to five of the six orders of Laurasiatheria, plus five outgroup species. Ingroup and outgroup species were chosen to maximize the number single-copy ortholog genes for which sequence data was available for all species in our study. Phylogenetic analyses of the concatenated dataset using maximum likelihood and Bayesian methods resulted on an identical and well supported topology in all alignment strategies compared. Our analyses provide high support for the sister relationship between Chiroptera and Cetartiodactyla and also provide support for placing Perissodactyla as sister to Carnivora. We obtained maximal estimates of bootstrap support (100%) and posterior probability (1.00) for all nodes within Laurasiatheria. Our study provides a further demonstration of the utility of very large and conserved genomic dataset to clarify our understanding of the evolutionary relationships among mammals.  相似文献   

10.
Aligned protein-coding genes from 19 completely sequenced mammalian mitochondrial genomes were examined by parsimony and maximum likelihood analyses. Particular attention is given to a comparison between gene-based and structure-based data partitions. Because actual structures are not known for most of the mitochondrially encoded proteins, three different surrogate partitioning schemes were examined, each based on the identity of the consensus amino acid at a specific homologous position. One of the amino-acid-based partitioning schemes gave the highest likelihood, but that scheme was based on concordance with a well-corroborated phylogeny from an earlier parsimony analysis. The gene-based partitioning scheme gave a significantly higher likelihood compared to the only structure-based scheme examined that could be generated without prior assumptions about the phylogeny. Two contrasting phylogenetic inferences were supported by the analyses. Both unpartitioned analyses and analyses in which all partitions were constrained to have identical patterns of branch lengths supported ((Artiodactyla, Cetacea) (Perissodactyla, Carnivora)), whereas all analyses with that constraint relaxed supported (((Artiodactyla, Cetacea) Carnivora) Perissodactyla).  相似文献   

11.
Higher-level relationships within, and the root of Placentalia, remain contentious issues. Resolution of the placental tree is important to the choice of mammalian genome projects and model organisms, as well as for understanding the biogeography of the eutherian radiation. We present phylogenetic analyses of 63 species representing all extant eutherian mammal orders for a new molecular phylogenetic marker, a 1.3kb portion of exon 26 of the apolipoprotein B (APOB) gene. In addition, we analyzed a multigene concatenation that included APOB sequences and a previously published data set (Murphy et al., 2001b) of three mitochondrial and 19 nuclear genes, resulting in an alignment of over 17kb for 42 placentals and two marsupials. Due to computational difficulties, previous maximum likelihood analyses of large, multigene concatenations for placental mammals have used quartet puzzling, less complex models of sequence evolution, or phylogenetic constraints to approximate a full maximum likelihood bootstrap. Here, we utilize a Unix load sharing facility to perform maximum likelihood bootstrap analyses for both the APOB and concatenated data sets with a GTR+Gamma+I model of sequence evolution, tree-bisection and reconnection branch-swapping, and no phylogenetic constraints. Maximum likelihood and Bayesian analyses of both data sets provide support for the superordinal clades Boreoeutheria, Euarchontoglires, Laurasiatheria, Xenarthra, Afrotheria, and Ostentoria (pangolins+carnivores), as well as for the monophyly of the orders Eulipotyphla, Primates, and Rodentia, all of which have recently been questioned. Both data sets recovered an association of Hippopotamidae and Cetacea within Cetartiodactyla, as well as hedgehog and shrew within Eulipotyphla. APOB showed strong support for an association of tarsier and Anthropoidea within Primates. Parsimony, maximum likelihood and Bayesian analyses with both data sets placed Afrotheria at the base of the placental radiation. Statistical tests that employed APOB to examine a priori hypotheses for the root of the placental tree rejected rooting on myomorphs and hedgehog, but did not discriminate between rooting at the base of Afrotheria, at the base of Xenarthra, or between Atlantogenata (Xenarthra+Afrotheria) and Boreoeutheria. An orthologous deletion of 363bp in the aligned APOB sequences proved phylogenetically informative for the grouping of the order Carnivora with the order Pholidota into the superordinal clade Ostentoria. A smaller deletion of 237-246bp was diagnostic of the superordinal clade Afrotheria.  相似文献   

12.
Morphological data supports monotremes as the sister group of Theria (extant marsupials + eutherians), but phylogenetic analyses of 12 mitochondrial protein-coding genes have strongly supported the grouping of monotremes with marsupials: the Marsupionta hypothesis. Various nuclear genes tend to support Theria, but a comprehensive study of long concatenated sequences and broad taxon sampling is lacking. We therefore determined sequences from six nuclear genes and obtained additional sequences from the databases to create two large and independent nuclear data sets. One (data set I) emphasized taxon sampling and comprised five genes, with a concatenated length of 2,793 bp, from 21 species (two monotremes, six marsupials, nine placentals, and four outgroups). The other (data set II) emphasized gene sampling and comprised eight genes and three proteins, with a concatenated length of 10,773 bp or 3,669 amino acids, from five taxa (a monotreme, a marsupial, a rodent, human, and chicken). Both data sets were analyzed by parsimony, minimum evolution, maximum likelihood, and Bayesian methods using various models and data partitions. Data set I gave bootstrap support values for Theria between 55% and 100%, while support for Marsupionta was at most 12.3%. Taking base compositional bias into account generally increased the support for Theria. Data set II exclusively supported Theria, with the highest possible values and significantly rejected Marsupionta. Independent phylogenetic evidence in support of Theria was obtained from two single amino acid deletions and one insertion, while no supporting insertions and deletions were found for Marsupionta. On the basis of our data sets, the time of divergence between Monotremata and Theria was estimated at 231-217 MYA and between Marsupialia and Eutheria at 193-186 MYA. The morphological evidence for a basal position of Monotremata, well separated from Theria, is thus fully supported by the available molecular data from nuclear genes.  相似文献   

13.
The phylogenetic relationship among primates, ferungulates (artiodactyls + cetaceans + perissodactyls + carnivores), and rodents was examined using proteins encoded by the H strand of mtDNA, with marsupials and monotremes as the outgroup. Trees estimated from individual proteins were compared in detail with the tree estimated from all 12 proteins (either concatenated or summing up log-likelihood scores for each gene). Although the overall evidence strongly suggests ((primates, ferungulates), rodents), the ND1 data clearly support another tree, ((primates, rodents), ferungulates). To clarify whether this contradiction is due to (1) a stochastic (sampling) error; (2) minor model-based errors (e.g., ignoring site rate variability), or (3) convergent and parallel evolution (specifically between either primates and rodents or ferungulates and the outgroup), the ND1 genes from many additional species of primates, rodents, other eutherian orders, and the outgroup (marsupials + monotremes) were sequenced. The phylogenetic analyses were extensive and aimed to eliminate the following artifacts as possible causes of the aberrant result: base composition biases, unequal site substitution rates, or the cumulative effects of both. Neither more sophisticated evolutionary analyses nor the addition of species changed the previous conclusion. That is, the statistical support for grouping rodents and primates to the exclusion of all other taxa fluctuates upward or downward in quite a tight range centered near 95% confidence. These results and a site-by-site examination of the sequences clearly suggest that convergent or parallel evolution has occurred in ND1 between primates and rodents and/or between ferungulates and the outgroup. While the primate/rodent grouping is strange, ND1 also throws some interesting light on the relationships of some eutherian orders, marsupials, and montremes. In these parts of the tree, ND1 shows no apparent tendency for unexplained convergences. Received: 5 December 1997 / Accepted: 24 February 1998  相似文献   

14.
We explored the phylogenetic utility and limits of the individual and concatenated mitochondrial genes for reconstructing the higher-level relationships of teleosts, using the complete (or nearly complete) mitochondrial DNA sequences of eight teleosts (including three newly determined sequences), whose relative phylogenetic positions were noncontroversial. Maximum-parsimony analyses of the nucleotide and amino acid sequences of 13 protein-coding genes from the above eight teleosts, plus two outgroups (bichir and shark), indicated that all of the individual protein-coding genes, with the exception of ND5, failed to recover the expected phylogeny, although unambiguously aligned sequences from 22 concatenated transfer RNA (tRNA) genes (stem regions only) recovered the expected phylogeny successfully with moderate statistical support. The phylogenetic performance of the 13 protein-coding genes in recovering the expected phylogeny was roughly classified into five groups, viz. very good (ND5, ND4, COIII, COI), good (COII, cyt b), medium (ND3, ND2), poor (ND1, ATPase 6), and very poor (ND4L, ND6, ATPase 8). Although the universality of this observation was unclear, analysis of successive concatenation of the 13 protein-coding genes in the same ranking order revealed that the combined data sets comprising nucleotide sequences from the several top-ranked protein-coding genes (no 3rd codon positions) plus the 22 concatenated tRNA genes (stem regions only) best recovered the expected phylogeny, with all internal branches being supported by bootstrap values >90%. We conclude that judicious choice of mitochondrial genes and appropriate data weighting, in conjunction with purposeful taxonomic sampling, are prerequisites for resolving higher-level relationships in teleosts under the maximum-parsimony optimality criterion.  相似文献   

15.
We have reconstructed the phylogenetic relationships of 23 species in the dog family, Canidae, using DNA sequence data from six nuclear loci. Individual gene trees were generated with maximum parsimony (MP) and maximum likelihood (ML) analysis. In general, these individual gene trees were not well resolved, but several identical groupings were supported by more than one locus. Phylogenetic analysis with a data set combining the six nuclear loci using MP, ML, and Bayesian approaches produced a more resolved tree that agreed with previously published mitochondrial trees in finding three well-defined clades, including the red fox-like canids, the South American foxes, and the wolf-like canids. In addition, the nuclear data set provides novel indel support for several previously inferred clades. Differences between trees derived from the nuclear data and those from the mitochondrial data include the grouping of the bush dog and maned wolf into a clade with the South American foxes, the grouping of the side-striped jackal (Canis adustus) and black-backed jackal (Canis mesomelas) and the grouping of the bat-eared fox (Otocyon megalotis) with the raccoon dog (Nycteruetes procyonoides). We also analyzed the combined nuclear + mitochondrial tree. Many nodes that were strongly supported in the nuclear tree or the mitochondrial tree remained strongly supported in the nuclear + mitochondrial tree. Relationships within the clades containing the red fox-like canids and South American canids are well resolved, whereas the relationships among the wolf-like canids remain largely undetermined. The lack of resolution within the wolf-like canids may be due to their recent divergence and insufficient time for the accumulation of phylogenetically informative signal.  相似文献   

16.
Mitochondrial sequences are widely used for species identification and for studying phylogenetic relationships among closely related species or populations of the same species. However, many studies of mammals have shown that the maternal history of the mitochondrial genome can be discordant with the true evolutionary history of the taxa. In such cases, the analyses of multiple nuclear genes can be more powerful for deciphering interspecific relationships.Here, we designed primers for amplifying 13 new exon-primed intron-crossing (EPIC) autosomal loci for studying shallow phylogeny and taxonomy of Laurasiatherian mammals. Three criteria were used for the selection of the markers: gene orthology, a PCR product length between 600 and 1200 nucleotides, and different chromosomal locations in the bovine genome. Positive PCRs were obtained from different species representing the orders Carnivora, Cetartiodactyla, Chiroptera, Perissodactyla and Pholidota.The newly developed markers were analyzed in a phylogenetic study of the tribe Bovini (the group containing domestic and wild cattle, bison, yak, African buffalo, Asian buffalo, and saola) based on 17 taxa and 18 nuclear genes, representing a total alignment of 13,095 nucleotides. The phylogenetic results were compared to those obtained from analyses of the complete mitochondrial genome and Y chromosomal genes. Our analyses support a basal divergence of the saola (Pseudoryx) and a sister-group relationship between yak and bison. These results contrast with recent molecular studies but are in better agreement with morphology. The comparison of pairwise nucleotide distances shows that our nuDNA dataset provides a good signal for identifying taxonomic levels, such as species, genera, subtribes, tribes and subfamilies, whereas the mtDNA genome fails because of mtDNA introgression and higher levels of homoplasy. Accordingly, we conclude that the genus Bison should be regarded as a synonym of Bos, with the European bison relegated to a subspecies rank within Bos bison. We compared our molecular dating estimates to the fossil record in order to propose a biogeographic scenario for the evolution of Bovini during the Neogene.  相似文献   

17.
Oceanic dolphins (Delphinidae) are the product of a rapid radiation that yielded ~36 extant species of small to medium-sized cetaceans that first emerged in the Late Miocene. Although they are a charismatic group of organisms that have become poster children for marine conservation, many phylogenetic relationships within Delphinidae remain elusive due to the slow molecular evolution of the group and the difficulty of resolving short branches from successive cladogenic events. Here I combine existing and newly generated sequences from four mitochondrial (mt) genes and 20 nuclear (nu) genes to reconstruct a well-supported phylogenetic hypothesis for Delphinidae. This study compares maximum-likelihood and Bayesian inference methods of several data sets including mtDNA, combined nuDNA, gene trees of individual nuDNA loci, and concatenated mtDNA+nuDNA. In addition, I contrast these standard phylogenetic analyses with the species tree reconstruction method of Bayesian concordance analysis (BCA). Despite finding discordance between mtDNA and individual nuDNA loci, the concatenated matrix recovers a completely resolved and robustly supported phylogeny that is also broadly congruent with BCA trees. This study strongly supports groupings such as Delphininae, Lissodelphininae, Globicephalinae, Sotalia+Delphininae, Steno+Orcaella+Globicephalinae, and Leucopleurus acutus, Lagenorhynchus albirostris, and Orcinus orca as basal delphinid taxa.  相似文献   

18.
The melyrid lineage of beetles form a distinct group of the superfamily Cleroidea with a high level of soft‐bodiedness. Here we present the first molecular phylogenetic analysis of this group. The data matrix included partial sequences of the small and large subunits of rRNA, the mitochondrial large subunit rRNA, and cytochrome oxidase subunit I of 67 melyrid and eight outgroup taxa. The concatenated sequences were analysed using maximum‐parsimony (MP), maximum‐likelihood (ML) and Bayesian analysis (BA) approach. The results strongly supported the monophyly of the melyrid lineage splitting into six major clades: Rhadalidae, Mauroniscidae, Prionoceridae, Melyridae sensu stricto, Dasytidae and Malachiidae. The rhadalids were placed in the most basal position, followed by mauroniscids and prionocerids. Three terminal lineages—the true melyrids, dasytids, and malachiids—are well supported by all analyses, but their mutual relationships remain uncertain as MP analysis proposed alternative topologies to that of the ML and BA trees, with often low node support in the latter two methods. The monophyly of the subfamily Danacaeinae (Dasytidae) with respect to the danacaeine genera of the southern hemisphere (Hylodanacaea, Listrocerus, Amecocerus) was challenged as they were found to be polyphyletic. Similarly, the monophyly of Attalus was rejected by our analyses and shown to be polyphyletic. Based on the preferred phylogenetic hypothesis, the subfamilies Rhadalinae, Dasytinae and Malachiinae are elevated to family rank. © The Willi Hennig Society 2011.  相似文献   

19.
In phylogenetic analyses with combined multigene or multiprotein data sets, accounting for differing evolutionary dynamics at different loci is essential for accurate tree prediction. Existing maximum likelihood (ML) and Bayesian approaches are computationally intensive. We present an alternative approach that is orders of magnitude faster. The method, Distance Rates (DistR), estimates rates based upon distances derived from gene/protein sequence data. Simulation studies indicate that this technique is accurate compared with other methods and robust to missing sequence data. The DistR method was applied to a fungal mitochondrial data set, and the rate estimates compared well to those obtained using existing ML and Bayesian approaches. Inclusion of the protein rates estimated from the DistR method into the ML calculation of trees as a branch length multiplier resulted in a significantly improved fit as measured by the Akaike Information Criterion (AIC). Furthermore, bootstrap support for the ML topology was significantly greater when protein rates were used, and some evident errors in the concatenated ML tree topology (i.e., without protein rates) were corrected. [Bayesian credible intervals; DistR method; multigene phylogeny; PHYML; rate heterogeneity.].  相似文献   

20.
The Cracidae is one of the most endangered and distinctive bird families in the Neotropics, yet the higher relationships among taxa remain uncertain. The molecular phylogeny of its 11 genera was inferred using 10,678 analyzable sites (5,412 from seven different mitochondrial segments and 5,266 sites from four nuclear genes). We performed combinability tests to check conflicts in phylogenetic signals of separate genes and genomes. Phylogenetic analysis showed that the unrooted tree of ((curassows, horned guan) (guans, chachalacas)) was favored by most data partitions and that different data partitions provided support for different parts of the tree. In particular, the concatenated mitochondrial DNA (mtDNA) genes resolved shallower nodes, whereas the combined nuclear sequences resolved the basal connections among the major clades of curassows, horned guan, chachalacas, and guans. Therefore, we decided that for the Cracidae all data should be combined for phylogenetic analysis. Maximum parsimony (MP), maximum likelihood (ML), and Bayesian analyses of this large data set produced similar trees. The MP tree indicated that guans are the sister group to (horned guan, (curassows, chachalacas)), whereas the ML and Bayesian analysis recovered a tree where the horned guan is a sister clade to curassows, and these two clades had the chachalacas as a sister group. Parametric bootstrapping showed that alternative trees previously proposed for the cracid genera are significantly less likely than our estimate of their relationships. A likelihood ratio test of the hypothesis of a molecular clock for cracid mtDNA sequences using the optimal ML topology did not reject rate constancy of substitutions through time. We estimated cracids to have originated between 64 and 90 million years ago (MYA), with a mean estimate of 76 MYA. Diversification of the genera occurred approximately 41-3 MYA, corresponding with periods of global climate change and other Earth history events that likely promoted divergences of higher level taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号