首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yuqing Zheng  Qiang Cui 《Proteins》2017,85(2):268-281
To probe the microscopic mechanisms that govern the titration behavior of buried ionizable groups, microsecond explicit solvent molecular dynamics simulations are carried out for several mutants of Staphylococcal nuclease using both fixed charge and polarizable force fields. While the ionization of Asp 66, Glu 66, and Lys 125 lead to enhanced structural fluctuations and partial unfolding of adjacent α‐helical regions, the ionization of Lys 25 causes local unfolding of adjacent β sheets. Using the sampled conformational ensembles, good agreement with experimental pKa values is obtained with Poisson–Boltzmann calculations using a protein dielectric constant of 2–4 for V66D/E; slightly larger dielectric constants are needed for Lys mutants especially L25K, suggesting that structural responses beyond microseconds are involved in ionization of Lys 25. Overall, the set of unbiased simulations provides insights into the spatial and temporal scales of protein and solvent motions that dictate the diverse titration behaviors of buried protein residues. Proteins 2017; 85:268–281. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
A genetic system for analysis of staphylococcal nuclease   总被引:40,自引:0,他引:40  
D Shortle 《Gene》1983,22(2-3):181-189
The gene encoding staphylococcal nuclease (strain Foggi) has been isolated, and its complete nucleotide sequence determined. When inserted into a derivative of plasmid pBR322, the nuc gene is expressed in Escherichia coli at a low level, and nuclease activity in individual colonies is readily assayed by a replica-plating chromogenic test. A set of plasmids with BamHI-linker "bracketed" deletions spanning the nuc gene can be used to map mutations genetically to defined segments of the gene. In combination with present methods for efficient in vitro mutagenesis, this plasmid-based genetic system can be applied to the detailed genetic analysis of this small, biochemically and biophysically well-characterized enzyme.  相似文献   

3.
It has been shown that the structure of staphylococcal nuclease breaks down reversibly both at a temperature increase above 20 degrees C and at its decrease. Both the heat and cold denaturations of protein are well approximated by a transition between two states differing in heat capacity, which means that the whole protein molecule represents a unique cooperative system with a well developed hydrophobic core. The transfer to a denatured state at a temperature decrease is accompanied by heat release and leads to a complete loss of the unique tertiary structure, decrease of the helicity and increase of the hydrodynamic volume of the molecule.  相似文献   

4.
Thermodynamic analysis by differential scanning calorimetry shows that the folding/unfolding transition of staphylococcal nuclease is consistent with the two-state process. Stopped-flow kinetic measurements, monitoring the Trp140 fluorescence and covering five decades in time (2 ms to 300 s), indicate that the unfolding from pH 7.0 to 3.1 is monophasic (time constant 1.15 s) and from pH 7.0 to 12.2 is biphasic (time constants: one less than 2 ms and the other 0.6 s). However, the folding, either from pH 3.1 to 7.0 or from pH 12.2 to 7.0, is triphasic (time constants 150 ms, 850 ms and 30 s from acid, 90 ms, 565 ms and 33 s from alkaline). A simple sequential model, which agrees with the above observations for acidic folding/unfolding is, D3 in equilibrium D2 in equilibrium D1 in equilibrium N. The three Ds denote three sub-states of the unfolded state and N denotes the native state. These sub-states of D have similar enthalpy and tryptophan fluorescence, and their equilibrium cannot be shifted by temperature changes. However, they are kinetically distinctive. Data do not favor alternative mechanisms assuming parallel transitions of the three Ds to N, or complexity of the N state, or parallel transitions of sub-states of N1, N2 and N3 to D. Other more complex, branched or cyclic, kinetics are not considered because of the lack of evidence, pH dependence of the unfolding kinetics suggests that the unfolding is triggered by protonation of 0.8(+/- 0.3) ionizable groups, with a pKa of 3.9 or by deprotonation of 1.6(+/- 0.4) ionizable groups with pKa values near 10.5. Circular dichroisms indicate that these three D states retain nonrandom chain conformation. Possible role of these "chain conformation" in the protein folding is discussed.  相似文献   

5.
Thermal denaturation of staphylococcal nuclease   总被引:5,自引:0,他引:5  
The fully reversible thermal denaturation of staphylococcal nuclease in the absence and presence of Ca2+ and/or thymidine 3',5'-diphosphate (pdTp) from pH 4 to 8 has been studied by high-sensitivity differential scanning calorimetry. In the absence of ligands, the denaturation is accompanied by an enthalpy change of 4.25 cal g-1 and an increase in specific heat of 0.134 cal K-1 g-1, both of which are usual values for small globular proteins. The temperature (tm) of maximal excess specific heat is 53.4 degrees C. Each of the ligands, Ca2+ and pdTp, by itself has important effects on the unfolding of the protein which are enhanced when both ligands are present. Addition of saturating concentrations of these ligands raises the denaturational enthalpy to 5.74 cal g-1 in the case of Ca2+ and to 6.72 cal g-1 in the case of pdTp. The ligands raise the tm by as much as 11 degrees C depending on ligand concentration. From the variation of the denaturational enthalpies with ligand concentrations, binding constants at 53 degrees C equal to 950 M-1 and 1.4 X 10(4) M-1 are estimated for Ca2+ and pdTp, respectively, and from the enthalpies at ligand saturation, binding enthalpies at 53 degrees C of -15.0 and -19.3 kcal mol-1.  相似文献   

6.
Protein molecules generally adopt a tertiary structure in which all backbone and side chain conformations are arranged in local energy minima; however, in several well-refined protein structures examples of locally strained geometries, such as cis peptide bonds, have been observed. Staphylococcal nuclease A contains a single cis peptide bond between residues Lys 116 and Pro 117 within a type VIa beta-turn. Alternative native folded forms of nuclease A have been detected by NMR spectroscopy and attributed to a mixture of cis and trans isomers at the Lys 116-Pro 117 peptide bond. Analyses of nuclease variants K116G and K116A by NMR spectroscopy and X-ray crystallography are reported herein. The structure of K116A is indistinguishable from that of nuclease A, including a cis 116-117 peptide bond (92% populated in solution). The overall fold of K116G is also indistinguishable from nuclease A except in the region of the substitution (residues 112-117), which contains a predominantly trans Gly 116-Pro 117 peptide bond (80% populated in solution). Both Lys and Ala would be prohibited from adopting the backbone conformation of Gly 116 due to steric clashes between the beta-carbon and the surrounding residues. One explanation for these results is that the position of the ends of the residue 112-117 loop only allow trans conformations where the local backbone interactions associated with the phi and psi torsion angles are strained. When the 116-117 peptide bond is cis, less strained backbone conformations are available. Thus the relaxation of the backbone strain intrinsic to the trans conformation compensates for the energetically unfavorable cis X-Pro peptide bond. With the removal of the side chain from residue 116 (K116G), the backbone strain of the trans conformation is reduced to the point that the conformation associated with the cis peptide bond is no longer favorable.  相似文献   

7.
We have determined by X-ray crystallography the structures of several variants of staphylococcal nuclease with long flexible straight chain and equivalent length cyclic unnatural amino acid side chains embedded in the protein core. The terminal atoms in the straight side chains are not well defined by the observed electron density even though they remain buried within the protein interior. We have previously observed this behavior and have suggested that it may arise from the addition of side-chain vibrational and oscillational motions with each bond as a side chain grows away from the relatively rigid protein main chain and/or the population of multiple rotamers (Wynn R, Harkins P, Richards FM. Fox RO. 1996. Mobile unnatural amino acid side chains in the core of staphylococcal nuclease. Protein Sci 5:1026-1031). Reduction of the number of degrees of freedom by cyclization of a side chain would be expected to constrain these motions. These side chains are in fact well defined in the structures described here. Over-packing of the protein core results in a 1.0 A shift of helix 1 away from the site of mutation. Additionally, we have determined the structure of a side chain containing a single hydrogen to fluorine atom replacement on a methyl group. A fluorine atom is intermediate in size between methyl group and a hydrogen atom. The fluorine atom is observed in a single position indicating it does not rotate like methyl hydrogen atoms. This change also causes subtle differences in the packing interactions.  相似文献   

8.
Structure-based calculations of pKa values and electrostatic free energies of proteins assume that electrostatic effects in the unfolded state are negligible. In light of experimental evidence showing that this assumption is invalid for many proteins, and with increasing awareness that the unfolded state is more structured and compact than previously thought, a detailed examination of electrostatic effects in unfolded proteins is warranted. Here we address this issue with structure-based calculations of electrostatic interactions in unfolded staphylococcal nuclease. The approach involves the generation of ensembles of structures representing the unfolded state, and calculation of Coulomb energies to Boltzmann weight the unfolded state ensembles. Four different structural models of the unfolded state were tested. Experimental proton binding data measured with a variant of nuclease that is unfolded under native conditions were used to establish the validity of the calculations. These calculations suggest that weak Coulomb interactions are an unavoidable property of unfolded proteins. At neutral pH, the interactions are too weak to organize the unfolded state; however, at extreme pH values, where the protein has a significant net charge, the combined action of a large number of weak repulsive interactions can lead to the expansion of the unfolded state. The calculated pKa values of ionizable groups in the unfolded state are similar but not identical to the values in small peptides in water. These studies suggest that the accuracy of structure-based calculations of electrostatic contributions to stability cannot be improved unless electrostatic effects in the unfolded state are calculated explicitly.  相似文献   

9.
Thermally unfolded staphylococcal nuclease has been rapidly quenched to temperatures near 0 degree C and the refolding behavior examined using an NMR kinetic experiment. Unfolded protein, exhibiting random coil chemical shifts, persists following the quench and refolds in two distinct kinetic phases. A protein folding intermediate with a trans Lys 116-Pro 117 peptide bond is transiently overpopulated and relaxes to the predominantly cis native cis-trans equilibrium. The rate of trans-->cis isomerization in the native-like nuclease intermediate is approximately 100-fold faster than that observed in a Lys-Pro model peptide. The activation enthalpy of 20 kcal/mol observed for the nuclease Lys 116-Pro 117 peptide bond is comparable to that observed for other X-Pro isomerizations.  相似文献   

10.
The DNA in intranuclear yeast chromatin is protected from rapid staphylococcal nuclease degradation so as to yield an oligomeric series of DNA sizes. The course of production and disappearance of the various oligomers agrees quantitatively with a theory of random cleavage by the enzyme at uniformly susceptible sites. The sizes of the oligomers are integral repeats of a basic size, about 160 base pairs, and 80-90% of the yeast genome is involved in this repeating structure. Within this repeat there exists a 140 base pair core of more nuclease-resistant DNA. During the course of digestion, the sizes of the oligomers decrease continuously. The widths of the distribution of DNA sizes increase in order: monomer (1 X repeat size, half width = 5-7 base pairs) less than dimer (2 X repeat size, half width = 30 base pairs) less than trimer (3 X repeat size, half width = 40-45 base pairs). The yeast genome thus seems to have variable spacing of the nucleaseresistant cores, to produce the average repeat size of about 160 base pairs. Also, the presence of more than one species of monomer and dimer at certain times of digestion suggests a possible heterogeneity in the subunit structure.  相似文献   

11.
The crystal structure of the staphylococcal nuclease mutant V66K, in which valine 66 is replaced by lysine, has been solved at 1.97 A resolution. Unlike lysine residues in previously reported protein structures, this residue appears to bury its side-chain in the hydrophobic core without salt bridging, hydrogen bonding or other forms of electrostatic stabilization. Solution studies of the free energy of denaturation, delta GH2O, show marked pH dependence and clearly indicate that the lysine residue must be deprotonated in the folded state. V66K is highly unstable at neutral pH but only modestly less stable than the wild-type protein at high pH. The pH dependence of stability for V66K, in combination with similar measurements for the wild-type protein, allowed determination of the pKa values of the lysine in both the denatured and native forms. The epsilon-amine of this residue has a pKa value in the denatured state of 10.2, but in the native state it must be 6.4 or lower. The epsilon-amine is thus deprotonated in the folded molecule. These values enabled an estimation of the epsilon-amine's relative change in free energy of solvation between solvent and the protein interior at 5.1 kcal/mol or greater. This implies that the value of the dielectric constant of the protein interior must be less than 12.8. Lysine is usually found with the methylene groups of its side-chain partly buried but is nevertheless considered a hydrophilic surface residue. It would appear that the high pKa value of lysine, which gives it a positive charge at physiological pH, is the primary reason for its almost exclusive confinement to the surface proteins. When deprotonated, this amino acid type can be fully incorporated into the hydrophobic core.  相似文献   

12.
The equilibrium folding pathway of staphylococcal nucleas (SNase) has been approximated using a statistical thermodynamic formalism that utilizes the high-resolution structure of the native state as a template to generate a large ensemble of partially folded states. Close to 400,000 different states ranging from the native to the completely unfolded states were included in the analysis. The probability of each state was estimated using an empirical structural parametrization of the folding energetics. It is shown that this formalism predicts accurately the stability of the protein, the cooperativity of the folding/unfolding transition observed by differential scanning calorimetry (DSC) or urea denaturation and the thermodynamic parameters for unfolding. More importantly, this formalism provides a quantitative account of the experimental hydrogen exchange protection factors measured under native conditions for SNase. These results suggest that the computer-generated distribution of states approximates well the ensemble of conformations existing in solution. Furthermore, this formalism represents the first model capable of quantitatively predicting within a unified framework the probability distribution of states seen under native conditions and its change upon unfolding. © 1997 Wiley-Liss, Inc.  相似文献   

13.
A quadruple mutant of staphylococcal nuclease, nuclease (V66L/G79S/G88V/L108V), has been crystallized in a form well suited to moderate-to-high resolution x-ray diffraction analysis. This mutant is highly unstable; only about 20% of the protein in solution at room temperature is in its folded form. Under the crystallization conditions, the protein exhibits circular dichroism properties similar to, but not identical with, those of native wild type protein. The crystals belong to the space group P6(1)22 or P6(5)22 with unit cell dimensions of a = b = 61.1 A, c = 170.1 A and diffract to at least 2.5 A resolution. A data set complete to 3.7 A resolution has been collected and processed; attempts to determine the structure using molecular replacement techniques are under way.  相似文献   

14.
To search for submolecular foldon units, the spontaneous reversible unfolding and refolding of staphylococcal nuclease under native conditions was studied by a kinetic native-state hydrogen exchange (HX) method. As for other proteins, it appears that staphylococcal nuclease is designed as an assembly of well-integrated foldon units that may define steps in its folding pathway and may regulate some other functional properties. The HX results identify 34 amide hydrogens that exchange with solvent hydrogens under native conditions by way of large transient unfolding reactions. The HX data for each hydrogen measure the equilibrium stability (ΔGHX) and the kinetic unfolding and refolding rates (kop and kcl) of the unfolding reaction that exposes it to exchange. These parameters separate the 34 identified residues into three distinct HX groupings. Two correspond to clearly defined structural units in the native protein, termed the blue and red foldons. The remaining HX grouping contains residues, not well separated by their HX parameters alone, that represent two other distinct structural units in the native protein, termed the green and yellow foldons. Among these four sets, a last unfolding foldon (blue) unfolds with a rate constant of 6 × 10− 6 s− 1 and free energy equal to the protein's global stability (10.0 kcal/mol). It represents part of the β-barrel, including mutually H-bonding residues in the β4 and β5 strands, a part of the β3 strand that H-bonds to β5, and residues at the N-terminus of the α2 helix that is capped by β5. A second foldon (green), which unfolds and refolds more rapidly and at slightly lower free energy, includes residues that define the rest of the native α2 helix and its C-terminal cap. A third foldon (yellow) defines the mutually H-bonded β1-β2-β3 meander, completing the native β-barrel, plus an adjacent part of the α1 helix. A final foldon (red) includes residues on remaining segments that are distant in sequence but nearly adjacent in the native protein. Although the structure of the partially unfolded forms closely mimics the native organization, four residues indicate the presence of some nonnative misfolding interactions. Because the unfolding parameters of many other residues are not determined, it seems likely that the concerted foldon units are more extensive than is shown by the 34 residues actually observed.  相似文献   

15.
16.
The temperature dependence of the pressure-induced equilibrium unfolding of staphylococcal nuclease (Snase) was determined by fluorescence of the single tryptophan residue, FTIR absorption for the amide I' and tyrosine O-H bands, and small-angle X-ray scattering (SAXS). The results from these three techniques were similar, although the stability as measured by fluorescence was slightly lower than that measured by FTIR and SAXS. The resulting phase diagram exhibits the well-known curvature for heat and cold denaturation of proteins, due to the large decrease in heat capacity upon folding. The volume change for unfolding became less negative with increasing temperatures, consistent with a larger thermal expansivity for the unfolded state than for the folded state. Fluorescence-detected pressure-jump kinetics measurements revealed that the curvature in the phase diagram is due primarily to the rate constant for folding, indicating a loss in heat capacity for the transition state relative to the unfolded state. The similar temperature dependence of the equilibrium and activation volume changes for folding indicates that the thermal expansivities of the folded and transition states are similar. This, along with the fact that the activation volume for folding is positive over the temperature range examined, the nonlinear dependence of the folding rate constant upon temperature implicates significant dehydration in the rate-limiting step for folding of Snase.  相似文献   

17.
Understanding collective motions in protein crystals is likely to furnish insight into functional protein dynamics and will improve models for refinement against diffraction data. Here, four 10 ns molecular dynamics simulations of crystalline Staphylococcal nuclease are reported and analyzed in terms of fluctuations and correlations in atomic motion. The simulation-derived fluctuations strongly correlate with, but are slightly higher than, the values derived from the experimental B-factors. Approximately 70% of the atomic fluctuations are due to internal protein motion. For 65% of the protein atoms the internal fluctuations converge on the nanosecond timescale. Convergence is much slower for the elements of the interatomic displacement correlation matrix--of these, >80% converge within 1 ns for interatomic distances less, approximately <6 A, but only 10% for separations approximately =12 A. Those collective motions that converged on the nanosecond timescale involve mostly correlations within the beta-barrel or between alpha-helices of the protein. The R-factor with the experimental x-ray diffuse scattering for the crystal, which is determined by the displacement variance-covariance matrix, decreases to 8% after 10 ns simulation. Both the number of converged correlation matrix elements and the R-factor depend logarithmically on time, consistent with a model in which the number of energy minima sampled depends exponentially on the maximum energy barrier crossed. The logarithmic dependence is also extrapolated to predict a convergence time for the whole variance-covariance matrix of approximately 1 micros.  相似文献   

18.
19.
Staphylococcal nuclease (SNase) has a single Trp residue at position 140. Circular dichroism, intrinsic and ANS-binding fluorescence, chemical titrations and enzymatic assays were used to measure the changes of its structure, stability and activities as the Trp was mutated or replaced to other positions. The results show that W140 is critical to SNase structure, stability, and function. Mutants such as W140A, F61W/W140A, and Y93W/W140A have unfolding, corrupted secondary and tertiary structures, diminished structural stability and attenuated catalytic activity as compared to the wild type. The deleterious effects of W140 substitution cannot be compensated by concurrent changes at topographical locations of position 61 or 93. Local hydrophobicity defined as a sum of hydrophobicity around a given residue within a distance is found to be a relevant property to SNase folding and stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号