首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we analyze the contribution of the undergraduate student who participates in the process of generating scientific data and developing a research project using Brazilian research as an example. Historically, undergraduate students have performed the critical role of research assistants in developing countries. This aspect has been underappreciated as a means of generating scientific data in Brazilian research facilities. Brazilian educational institutions are facing major age-related generational changes among the science faculty within the next 5-10 yr. A lack of adequate support for graduate students leads to a concern that undergraduates will not be interested in choosing research assistant programs and, subsequently, academic research careers. To remedy this situation it is important to focus on ways to encourage new research careers and enhance university-industry collaborations.  相似文献   

2.
In this study, I examined the hypothesis that undergraduate research enhances the educational experience of science undergraduates, attracts and retains talented students to careers in science, and acts as a pathway for minority students into science careers. Undergraduates from 41 institutions participated in an online survey on the benefits of undergraduate research experiences. Participants indicated gains on 20 potential benefits and reported on career plans. Over 83% of 1,135 participants began or continued to plan for postgraduate education in the sciences. A group of 51 students who discontinued their plans for postgraduate science education reported significantly lower gains than continuing students. Women and men reported similar levels of benefits and similar patterns of career plans. Ethnic groups did not significantly differ in reported levels of benefits or plans to continue with postgraduate education.  相似文献   

3.
An urgent need exists for graduate and professional schools to establish evidence-based STEM (science, technology, engineering, and math) pipeline programs to increase the diversity of the biomedical workforce. An untapped yet promising pool of willing participants are capable high school students that have a strong STEM interest but may lack the skills and the guided mentoring needed to succeed in competitive STEM fields. This study evaluates and compares the impact of the Loma Linda University (LLU) Summer Health Disparities Research Program on high school (HS) and undergraduate (UG) student participants. The primary focus of our summer research experience (SRE) is to enhance the research self-efficacy of the participants by actively involving them in a research project and by providing the students with personalized mentoring and targeted career development activities, including education on health disparities. The results of our study show that our SRE influenced terminal degree intent and increased participant willingness to incorporate research into future careers for both the HS and the UG groups. The quantitative data shows that both the HS and the UG participants reported large, statistically significant gains in self-assessed research skills and research self-efficacy. Both participant groups identified the hands-on research and the mentor experience as the most valuable aspects of our SRE and reported increased science skills, increased confidence in science ability and increased motivation and affirmation to pursue a science career. The follow-up data indicates that 67% of the HS participants and 90% of the UG participants graduated from college with a STEM degree; for those who enrolled in graduate education, 61% and 43% enrolled in LLU, respectively. We conclude that structured SREs can be highly effective STEM strengthening interventions for both UG and HS students and may be a way to measurably increase institutional and biomedical workforce diversity.  相似文献   

4.
Hartl DL 《Genetics》2011,189(4):1129-1133
To honor James F. Crow on the occasion of his 95th birthday, GENETICS has commissioned a series of Perspectives and Reviews. For GENETICS to publish the honorifics is fitting, as from their birth Crow and GENETICS have been paired. Crow was scheduled to be born in January 1916, the same month that the first issue of GENETICS was scheduled to appear, and in the many years that Crow has made major contributions to the conceptual foundations of modern genetics, GENETICS has chronicled his and other major advances in the field. The commissioned Perspectives and Reviews summarize and celebrate Professor Crow's contributions as a research scientist, administrator, colleague, community supporter, international leader, teacher, and mentor. In science, Professor Crow was the international leader of his generation in the application of genetics to populations of organisms and in uncovering the role of genetics in health and disease. In education, he was a superb undergraduate teacher whose inspiration changed the career paths of many students. His teaching skills are legendary, his lectures urbane and witty, rigorous and clear. He was also an extraordinary mentor to numerous graduate students and postdoctoral fellows, many of whom went on to establish successful careers of their own. In public service, Professor Crow served in key administrative positions at the University of Wisconsin, participated as a member of numerous national and international committees, and served as president of both the Genetics Society of America and the American Society for Human Genetics. This Perspective examines Professor Crow as teacher and mentor through the eyes and experiences of one student who was enrolled in his genetics course as an undergraduate and who later studied with him as a graduate student.  相似文献   

5.
An important discussion at colleges is centered on determining more effective models for teaching undergraduates. As personalized genomics has become more common, we hypothesized it could be a valuable tool to make science education more hands on, personal, and engaging for college undergraduates. We hypothesized that providing students with personal genome testing kits would enhance the learning experience of students in two undergraduate courses at Brigham Young University: Advanced Molecular Biology and Genomics. These courses have an emphasis on personal genomics the last two weeks of the semester. Students taking these courses were given the option to receive personal genomics kits in 2014, whereas in 2015 they were not. Students sent their personal genomics samples in on their own and received the data after the course ended. We surveyed students in these courses before and after the two-week emphasis on personal genomics to collect data on whether anticipation of obtaining their own personal genomic data impacted undergraduate student learning. We also tested to see if specific personal genomic assignments improved the learning experience by analyzing the data from the undergraduate students who completed both the pre- and post-course surveys. Anticipation of personal genomic data significantly enhanced student interest and the learning environment based on the time students spent researching personal genomic material and their self-reported attitudes compared to those who did not anticipate getting their own data. Personal genomics homework assignments significantly enhanced the undergraduate student interest and learning based on the same criteria and a personal genomics quiz. We found that for the undergraduate students in both molecular biology and genomics courses, incorporation of personal genomic testing can be an effective educational tool in undergraduate science education.  相似文献   

6.
Many science, technology, engineering, and mathematics (STEM) graduate students travel through the academic career pipeline without ever learning how to teach effectively, an oversight that negatively affects the quality of undergraduate science education and cheats trainees of valuable professional development. This article argues that all STEM graduate students and postdoctoral fellows should undergo training in teaching to strengthen their resumes, polish their oral presentation skills, and improve STEM teaching at the undergraduate level. Though this may seem like a large undertaking, the author outlines a three-step process that allows busy scientists to fit pedagogical training into their research schedules in order to make a significant investment both in their academic career and in the continuing improvement of science education.  相似文献   

7.
Wolfner MF  Schedl T 《Genetics》2012,191(2):293-295
The Genetics Society of America annually honors members who have made outstanding contributions to genetics. The Thomas Hunt Morgan Medal recognizes a lifetime contribution to the science of genetics. The Genetics Society of America Medal recognizes particularly outstanding contributions to the science of genetics over the past 31 years. The George W. Beadle Medal recognizes distinguished service to the field of genetics and the community of geneticists. The Elizabeth W. Jones Award for Excellence in Education recognizes individuals or groups who have had a significant, sustained impact on genetics education at any level, from kindergarten through graduate school and beyond. The Novitski Prize recognizes an extraordinary level of creativity and intellectual ingenuity in solving significant problems in biological research through the application of genetic methods. We are pleased to announce the 2012 awards.  相似文献   

8.
Charles F. Yocum has been a leader in the applications of biochemical techniques to the resolution and reconstitution of Photosystem II. His formal science education began as an undergraduate in biochemistry at Iowa State University and continued with graduate work in photosynthesis, first at the Illinois Institute of Technology and later at Indiana University. Following postdoctoral work at Cornell University, he joined the faculty of the University of Michigan where he has remained throughout his academic career. Charlie's contributions to a biochemical understanding of photosynthesis, particularly Photosystem II have been considerable, but most notably include his initial isolation of the first highly active oxygen-evolving particle from higher plant chloroplasts, the well-known and widely utilized `BBY particles'. In the aftermath of that isolation, Charlie's research further resolved these particles into ever finer and simpler, but active, Photosystem II complexes. In addition, Charlie's research has provided significant insight into the roles of both Cl and Ca2+ as required cofactors in photosynthetic oxygen evolution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
科研能力是科学素质的核心,是运用已有的知识和科学方法去探索新的知识和方法,解决新的问题,并在这个过程中形成创新思维的能力。科学技术的创新是医学事业发展的阶梯,科技引领着医学探究生命的本质,通过对各种疾病的根源、机制、发生、后果进行研究,找到预防和治疗疾病的最佳途径,为人类解除疾病带来的痛苦。医学科技创新使医学得到快速发展的同时,为社会培养了高水平、高素质的医学人才。然而,我国的高等教育体制普遍注重教育方法的革新,而忽视学生综合素质和创新能力的培养。特别是医学高等院校,本科生的教育教学工作没有重视与科研相结合。随着高等教育体制改革的不断深入与现代科学技术的迅速发展,本科生的科研创新能力亟待进一步提高。本科生科研能力的培养已经成为当前高等教育改革的一个重要目标。本文针对医学院校本科生培养创新能力的重要性和必要性进行探讨,为医学教育的发展提供参考的资料。  相似文献   

10.
Science, engineering and mathematics-related disciplines have relied heavily on a researcher's ability to visualize phenomena under study and being able to link and superimpose various abstract and concrete representations including visual, spatial, and temporal. The spatial representations are especially important in all branches of biology (in developmental biology time becomes an important dimension), where 3D and often 4D representations are crucial for understanding the phenomena. By the time biology students get to undergraduate education, they are supposed to have acquired visual-spatial thinking skills, yet it has been documented that very few undergraduates and a small percentage of graduate students have had a chance to develop these skills to a sufficient degree. The current paper discusses the literature that highlights the essence of visual-spatial thinking and the development of visual-spatial literacy, considers the application of the visual-spatial thinking to biology education, and proposes how modern technology can help to promote visual-spatial literacy and higher order thinking among undergraduate students of biology.  相似文献   

11.
目的:通过了解某高校甲型H1N1流感病例的流行病学分布特征,为预防和控制流感在高校的蔓延提供依据。方法:以某高校2009年11月6日至2009年11月24日发病并确诊的74例甲型H1N1流感病例为研究对象,分析并比较病例的年龄、性别、学历层次、年级、专业、发病时间和临床症状。结果:74例甲型H1N1流感确诊病例均为学生,罹患率为1.63%,其中男性占94.6%,女性占5.4%;病例平均年龄为20.5岁±2.2岁;94.6%的病例为本科生;本科生罹患率(4.03%)显著高于研究生(0.14%);2006级见习期本科生罹患率(11.05%)显著高于其他年级学生;疫情的流行全距为19天,发病高峰为2009年11月13日至2009年11月18日;病例以发热、咳嗽、乏力、头疼等临床症状为主。结论:该高校甲型H1N1流感确诊病例多为22岁以下的男性学生。本研究提示加强见习学生的监测和管理、设立隔离宿舍、接种疫苗等有针对性的措施能够有效控制流感疫情在高校蔓延。  相似文献   

12.
目的:通过了解某高校甲型H1N1 流感病例的流行病学分布特征,为预防和控制流感在高校的蔓延提供依据。方法:以某高 校2009 年11 月6 日至2009 年11 月24 日发病并确诊的74 例甲型H1N1 流感病例为研究对象,分析并比较病例的年龄、性别、 学历层次、年级、专业、发病时间和临床症状。结果:74 例甲型H1N1 流感确诊病例均为学生,罹患率为1.63 %,其中男性占94.6 %,女性占5.4 %;病例平均年龄为20.5 岁± 2.2 岁;94.6 %的病例为本科生;本科生罹患率(4.03%)显著高于研究生(0.14%);2006 级见习期本科生罹患率(11.05 %)显著高于其他年级学生;疫情的流行全距为19 天,发病高峰为2009 年11 月13 日至2009 年 11 月18 日;病例以发热、咳嗽、乏力、头疼等临床症状为主。结论:该高校甲型H1N1 流感确诊病例多为22岁以下的男性学生。本 研究提示加强见习学生的监测和管理、设立隔离宿舍、接种疫苗等有针对性的措施能够有效控制流感疫情在高校蔓延。  相似文献   

13.
Science, engineering and mathematics-related disciplines have relied heavily on a researcher’s ability to visualize phenomena under study and being able to link and superimpose various abstract and concrete representations including visual, spatial, and temporal. The spatial representations are especially important in all branches of biology (in developmental biology time becomes an important dimension), where 3D and often 4D representations are crucial for understanding the phenomena. By the time biology students get to undergraduate education, they are supposed to have acquired visual–spatial thinking skills, yet it has been documented that very few undergraduates and a small percentage of graduate students have had a chance to develop these skills to a sufficient degree. The current paper discusses the literature that highlights the essence of visual–spatial thinking and the development of visual–spatial literacy, considers the application of the visual–spatial thinking to biology education, and proposes how modern technology can help to promote visual–spatial literacy and higher order thinking among undergraduate students of biology.  相似文献   

14.
I became interested in biology as an undergraduate in a premedical curriculum but developed a passion for the field of reproductive biology because of a course in physiology of reproduction taken to meet requirements for admission to veterinary school. My career path changed, and I entered graduate school, obtained the Ph.D., and have enjoyed an academic career as a reproductive biologist conducting research in uterine biology and pregnancy in animal science departments at the University of Florida and at Texas A&M University. However, I have never allowed academic boundaries to interfere with research and graduate education as that is contrary to collegiality, the cornerstone of great universities. I consider that my major contributions to science include 1) identification of proteins secreted by cells of the uterine endometrium that are critical to successful establishment and maintenance of pregnancy; 2) discovery of steroids and proteins required for pregnancy recognition signaling and their mechanisms of action in pigs and ruminant species; 3) investigation of fetal-placental development and placental transport of nutrients, including water and electrolytes; 4) identification of linkages between nutrition and fetal-placental development; 5) defining aspects of the endocrinology of pregnancy; and 6) contributing to efforts to exploit the therapeutic value of interferon tau, particularly for treatment of autoimmune diseases. My current studies are focused on the role of select nutrients in the uterine lumen, specifically amino acids and glucose, that affect development and survival of the conceptus and translation of mRNAs and, with colleagues at Seoul National University, gene expression by the avian reproductive tract at key periods postovulation. Another goal is to understand stromal-epithelial cell signaling, whereby progesterone and estrogen act via uterine stromal cells that express receptors for sex steroids to stimulate secretion of growth factors (e.g., fibroblast growth factors and hepatocyte growth factor) that, in turn, regulate functions of uterine epithelial cells and conceptus trophectoderm.  相似文献   

15.
This report describes the road map we followed at our university to accommodate three main factors: financial pressure within the university system; desire to enhance the learning experience of undergraduates; and motivation to increase the prominence of the discipline of developmental biology in our university. We engineered a novel, multi-year undergraduate developmental biology program which was "student-oriented," ensuring that students were continually exposed to the underlying principles and philosophy of this discipline throughout their undergraduate career. Among its key features are introductory lectures in core courses in the first year, which emphasize the relevance of developmental biology to tissue engineering, reproductive medicine, therapeutic approaches in medicine, agriculture and aquaculture. State-of-the-art animated computer graphics and images of high visual impact are also used. In addition, students are streamed into the developmental biology track in the second year, using courses like human embryology and courses shared with cell biology, which include practicals based on modern experimental approaches. Finally, fully dedicated third-year courses in developmental biology are undertaken in conjunction with stand-alone practical courses where students experiencefirst-hand work in a research laboratory. Our philosophy is a "cradle-to-grave" approach to the education of undergraduates so as to prepare highly motivated, enthusiastic and well-educated developmental biologists for entry into graduate programs and ultimately post-doctoral research.  相似文献   

16.
Effective and accurate communication of scientific findings is essential. Unfortunately, scientists are not always well trained in how to best communicate their results with other scientists nor do all appreciate the importance of speaking with the public. Here, we provide an example of how the development of oral communication skills can be integrated with research experiences at the undergraduate level. We describe our experiences developing, running, and evaluating a course for undergraduates that complemented their existing undergraduate research experiences with instruction on the nature of science and intensive training on the development of science communication skills. Students delivered science talks, research monologues, and poster presentations about the ecological and evolutionary research in which they were involved. We evaluated the effectiveness of our approach using the CURE survey and a focus group. As expected, undergraduates reported strong benefits to communication skills and confidence. We provide guidance for college researchers, instructors, and administrators interested in motivating and equipping the next generation of scientists to be excellent science communicators.  相似文献   

17.
为提高研究生的综合素质,我校在本科生"微生物学"教学中探索了以创新实践为主要内容的教学改革,其中"教师—研究生—创新小组"三级交互的教学模式是以研究生为中心和纽带的交互式技能训练,是创新实践的关键。研究生以其积累的微生物学知识、掌握的实验技能和正在进行的研究项目,承担本科生创新实践"指导者"角色,结果证实这一模式对本科生科学思维的形成、实验技能的提高以及创新意识的培养等都有重要的作用,是研究生助教模式的创新探索,也是提高研究生综合素质的重要途径。  相似文献   

18.
生物化学(Biochemistry)和分子生物学(Molecular Biology)课程是生命科学领域人才培养的基石。本研究以这些课程为桥梁,从知识框架重构、教学案例建设、教学资源共享、教学手段更新、立德树人格局的建立等方面入手,以学科特色科研成果案例和在线教学平台为支撑,通过课程教学实践,探索了以科研育人为导向,以课程建设为根基,以交流合作为推动力的本研一体化课程改革模式,搭建了“交流、实践、开放、信息化”的共享空间,实现了本、研教学以汲取知识为动力的自由、自主融合,使学生培养成效得到了提升。  相似文献   

19.
As a leading university in engineering education in China, Tsinghua University implemented industrial ecology (IE) education in the 1990s. This article describes the evolution of IE education at Tsinghua. Tsinghua mainstreams IE education into green education and engineering education not only by establishing independent courses of IE for both undergraduate and graduate students, but also by incorporating IE principles and knowledge modules into an increasing number of courses. During 2002–2015, a total of 1,023 undergraduates from 33 schools and departments participated in an IE course. To cope with the diversity of participants, four knowledge modules were customized for an undergraduate course: concepts and history; methods and tools; topics and applications; and policy and perspectives. Meanwhile, an interdisciplinary teaching method was adopted by inviting experts from diverse disciplines and organizing group discussions. Though the course has received strong positive feedback, four challenges still remain in IE education: defining the knowledge boundary, presenting an integrated view, utilizing an interdisciplinary methodology, and cultivating a class culture.  相似文献   

20.
Preparing students to explore, understand, and resolve societal challenges such as global climate change is an important task for evolutionary and ecological biologists that will require novel and innovative pedagogical approaches. Recent calls to reform undergraduate science education emphasize the importance of engaging students in inquiry-driven, active, and authentic learning experiences. We believe that the vast digital resources (i.e., “big data”) associated with natural history collections provide invaluable but underutilized opportunities to create such experiences for undergraduates in biology. Here, we describe an online, open-access educational module that we have developed that harnesses the power of collections-based information to introduce students to multiple conceptual and analytical elements of climate change, evolutionary, and ecological biology research. The module builds upon natural history specimens and data collected over the span of nearly a century in Yosemite National Park, California, to guide students through a series of exercises aimed at testing hypotheses regarding observed differences in response to climate change by two closely related and partially co-occurring species of chipmunks. The content of the module can readily be modified to meet the pedagogical goals and instructional levels of different courses while the analytical strategies outlined can be adapted to address a wide array of questions in evolutionary and ecological biology. In sum, we believe that specimen-based natural history data represent a powerful platform for reforming undergraduate instruction in biology. Because these efforts will result in citizens who are better prepared to understand complex biological relationships, the benefits of this approach to undergraduate education will have widespread benefits to society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号