首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytoplasmic sulfate for sulfation reactions may be derived either from extracellular fluids or from catabolism of sulfur-containing amino acids and other thiols. In vitro studies have pointed out the potential relevance of sulfur-containing amino acids as sources for sulfation when extracellular sulfate concentration is low or when its transport is impaired such as in DTDST [DTD (diastrophic dysplasia) sulfate transporter] chondrodysplasias. In the present study, we have considered the contribution of cysteine and cysteine derivatives to in vivo macromolecular sulfation of cartilage by using the mouse model of DTD we have recently generated [Forlino, Piazza, Tiveron, Della Torre, Tatangelo, Bonafe, Gualeni, Romano, Pecora, Superti-Furga et al. (2005) Hum. Mol. Genet. 14, 859-871]. By intraperitoneal injection of [35S]cysteine in wild-type and mutant mice and determination of the specific activity of the chondroitin 4-sulfated disaccharide in cartilage, we demonstrated that the pathway by which sulfate is recruited from the intracellular oxidation of thiols is active in vivo. To check whether cysteine derivatives play a role, sulfation of cartilage proteoglycans was measured after treatment for 1 week of newborn mutant and wild-type mice with hypodermic NAC (N-acetyl-L-cysteine). The relative amount of sulfated disaccharides increased in mutant mice treated with NAC compared with the placebo group, indicating an increase in proteoglycan sulfation due to NAC catabolism, although pharmacokinetic studies demonstrated that the drug was rapidly removed from the bloodstream. In conclusion, cysteine contribution to cartilage proteoglycan sulfation in vivo is minimal under physiological conditions even if extracellular sulfate availability is low; however, the contribution of thiols to sulfation becomes significant by increasing their plasma concentration.  相似文献   

2.
Sodium chlorate, a potent inhibitor of sulfation reactions, completely inhibits the formation of tyrosine-o-sulfate in type III procollagen in human fibroblasts, when used in concentrations that do not affect the incorporation of radioactive amino acids into protein. The unsulfated type III procollagen is secreted into the medium at a rate comparable, to those of sulfated type III procollagen and type I procollagen, which normally does not undergo sulfation. The enzymatic cleavage of the aminoterminal propeptide of type III procollagen is incomplete in fibroblast cultures, irrespective of the sulfation status of the protein.  相似文献   

3.
The major human urinary trypsin inhibitor is a proteoglycan   总被引:2,自引:0,他引:2  
The major urinary trypsin inhibitor (Mr 44 000), isolated from human urine, contains 35% carbohydrate. In addition to N-acetylglucosamine and neutral sugars (primarily mannose and galactose), the carbohydrate moiety contains hexuronic acid and N-acetylgalactosamine and corresponds to a glycosaminoglycan. This carbohydrate chain is an integral component of the inhibitor: it does not dissociate from the inhibitor when using dissociative conditions such as sodium dodecyl sulfate, guanidinium chloride, or by increasing ionic strength or mixing with cetylpyridinium chloride. This glycosaminoglycan chain is sensitive to chondroitinase ABC or testicular hyaluronidase digestion and corresponds to slightly sulfated chondroitin 4-sulfate or 6-sulfate. After treatment by these enzymes, the urinary inhibitor has a lower molecular mass (Mr 26 000) but still inhibits trypsin.  相似文献   

4.
5.
Monensin is a monovalent metal ionophore that affects the intracellular translocation of secretory proteins at the level of trans-Golgi cisternae. Exposure of endothelial cells to monensin results in the synthesis of heparan sulfate and chondroitin sulfate with a lower degree of sulfation. The inhibition is dose dependent and affects the ratio [35S]-sulfate/[3H]-hexosamine of heparan sulfate from both cells and medium, with no changes in their molecular weight. By the use of several degradative enzymes (heparitinases, glycuronidase, and sulfatases) the fine structure of the heparan sulfate synthesized by control and monensin-treated cells was investigated. The results have shown that among the six heparan sulfate disaccharides there is a specific decrease of the ones bearing a sulfate ester at the 6-position of the glucosamine moiety. All other biosynthetic steps were not affected by monensin. The results are indicative that monensin affects the hexosamine C-6 sulfation, and that this sterification is the last step of the heparan sulfate biosynthesis and should occur at the trans-Golgi compartment.  相似文献   

6.
7.
Chlorate--a potent inhibitor of protein sulfation in intact cells   总被引:20,自引:0,他引:20  
Chlorate is known to be an in vitro inhibitor of ATP-sulfurylase, the first enzyme in the biosynthesis of PAPS which is the ubiquitous co-substrate for sulfation. Here, the effect of chlorate on protein sulfation in intact cells was investigated. Treatment of various cell cultures with 1 mM sodium chlorate in a medium low in sulfate and sulfur-containing amino acids resulted in an inhibition of protein sulfation greater than 95%. Tyrosine as well as carbohydrate sulfation was blocked. Chlorate did not inhibit protein synthesis and did not exhibit any other toxic effects, even after prolonged treatment of cell cultures. Thus, chlorate treatment provides a powerful tool for studying the biological significance of protein sulfation.  相似文献   

8.
Monoacylglycerol lipase is a serine hydrolase that play a major role in the degradation of 2-arachidonoylglycerol, an endocannabinoid neurotransmitter implicated in several physiological processes. Recent studies have shown the possible role of MAGL inhibitors as anti-inflammatory, anti-nociceptive and anti-cancer agents. The use of irreversible MAGL inhibitors determined an unwanted chronic MAGL inactivation, which acquires a functional antagonism function of the endocannabinoid system. However, the application of reversible MAGL inhibitors has not yet been explored, mainly due to the scarcity of known compounds possessing efficient reversible inhibitory activities. In this study we reported the first virtual screening analysis for the identification of reversible MAGL inhibitors. Among the screened compounds, the (4-(4-chlorobenzoyl)piperidin-1-yl)(4-methoxyphenyl)methanone (CL6a) is a promising reversible MAGL inhibitor lead (Ki = 8.6 μM), which may be used for the future development of a new class of MAGL inhibitors. Furthermore, the results demonstrate the validity of the methodologies that we followed, encouraging additional screenings of other commercial databases.  相似文献   

9.
Five percent dimethyl sulfoxide (DMSO) completely inhibited tube initiation, stopped tube growth and suppressed the high respiration associated with tube growth of lily pollen. The effect of DMSO on respiration was indirect because uncoupling concentrations of 2,4-dinitrophenol abolished the inhibition of respiration. Five percent DMSO did not inhibit rapid starch synthesis during the first 30 minutes of incubation, nor did DMSO inhibit the period of high respiration associated with rapid starch synthesis. DMSO did not cause permanent damage to the cells since normal pollen tube growth occurred after its removal. Dimethyl sulfoxide is not a general inhibitor of pollen metabolism, but it may be a specific inhibitor of a process required for tube growth.  相似文献   

10.
Heparin stimulates 2-3-fold, in a concentration-dependent manner, the synthesis of heparan sulfate secreted by cultured endothelial cells. The increase in synthetic rate takes place immediately after exposure of the cells to heparin, affects only heparan sulfate, and is specific for the endothelial cell. No stimulation by other glycosaminoglycans was observed. Analysis of the disaccharide products formed by the action of heparitinases reveals a higher degree of sulfation of the uronic acid residues in the heparan sulfate of cells exposed to heparin.  相似文献   

11.
Inhibition of tissue-type plasminogen activator (t-PA) by pooled plasma could be ascribed for only 60% to the endothelial cell type PA inhibitor. The residual inhibition is ascribed to a so-far undescribed plasma component present at 0.2 nmol/l. This component shows reversible binding to t-PA with an apparent Ki of 10 pmol/l (does not hinder t-PA binding to fibrin); also reacts with urokinase, but not with DIP-t-PA; is stable at 37°C and does not occur in media of endothelial cells, hepatocytes and fibroblasts. This PA binding component in plasma adds to the regulation of plasminogen activator activities.

Fibrinolysis Tissue-type plasminogen activator Urokinase Blood plasma Endothelial cell type plasminogen activator inhibitor Protease inhibitor  相似文献   


12.
A potent reversible inhibitor of carboxypeptidase A   总被引:2,自引:0,他引:2  
  相似文献   

13.
N,N'-Dicyclohexylcarbodiimide (DCCD) was found to inhibit the activity of proline-beta-naphthylamidase purified from porcine intestinal mucosa. The inhibition is rapid and reversible, and it is not due to the dissociation of the enzyme subunits. The mode of the inhibition by DCCD is noncompetitive with respect to each of the two substrates tested. Ki values of DCCD for the enzyme were determined to be 1.9 microM with proline-beta-naphthylamide and 12 microM for L-leucine ethyl ester. To our knowledge, this is the first time that DCCD was found to be a potent, reversible inhibitor for an enzyme.  相似文献   

14.
Dicumarol [3,3'-methylene-bis(4-hydroxycoumarin)] is a potent inhibitor of NAD(P)H:quinone oxidoreductase-1. Exposure of rat liver epithelial cells or of human skin fibroblasts to dicumarol resulted in a rapid and complete inhibition of connexin-43-dependent gap junctional intercellular communication (GJC). GJC was restored within 60min following removal of dicumarol. The concentration of dicumarol required for half maximal inhibition of GJC was 3muM, making dicumarol about 10-fold more effective in blocking GJC than 1-octanol and flufenamic acid, known inhibitors of GJC. Warfarin, a related coumarin derivative, also attenuated GJC, yet very high concentrations of 5-10mM were required. Dicumarol-induced downregulation of GJC was found not to be due to an interference with pathways enhancing the phosphorylation of connexin-43, such as epidermal growth factor receptor and extracellular signal-regulated kinase pathways. Rather, inhibition of GJC by dicumarol was paralleled by a reversible loss of a phosphorylated form ("P2") of connexin-43.  相似文献   

15.
The Ki for the interaction of 2-fluorourocanic acid with urocanase (from Pseudomonas fluorescens) is 1000 times as great as Km for the natural substrate, urocanic acid, whereas enzymatic hydration of the fluoro analog occurs ca. 100 times more slowly. Inhibition is competive and is eventually overcome by utilization of the analog. By contrast, 4-fluoro- and 2-amino-urocanic acid are neither significant inhibitors nor substrates for the enzyme. 2-Fluorourocanic acid may prove a useful tool for blocking the utilization of histidine as a one-carbon source in metabolism.  相似文献   

16.
Synthesis and in vitro characterization of novel, lactam boronic acid based, selective, and rapidly reversible inhibitor 14 of the 20S-proteasome is presented.  相似文献   

17.
《FEBS letters》1987,218(2):205-208
An inhibitor of development of the starfish Asterina pectinifera was purified to homogeneity from a culture of the bacterium Bacillus subtilis, and was identified as adenosine. Adenosine at 6 μg/ml was shown to halt embryonic development specifically at the 256-cell stage when all the embryonic cells differentiate into epithelial cells. By returning treated embryos to normal seawater, they developed normally to the bipinnaria stage.  相似文献   

18.
Mutations in the sulfate transporter gene, SCL26A2, lead to cartilage proteoglycan undersulfation resulting in chondrodysplasia in humans; the phenotype is mirrored in the diastrophic dysplasia (dtd) mouse. It remains unclear whether bone shortening and deformities are caused solely by changes in the cartilage matrix, or whether chondroitin sulfate proteoglycan undersulfation affects also signalling pathways involved in cell proliferation and differentiation. Therefore we studied macromolecular sulfation in the different zones of the dtd mouse growth plate and these data were related to growth plate histomorphometry and proliferation analysis.A 2-fold increase of non-sulfated disaccharide in dtd animals compared to wild-type littermates in the resting, proliferative and hypertrophic zones was detected indicating proteoglycan undersulfation; among the three zones the highest level of undersulfation was in the resting zone. The relative height of the hypertrophic zone and the average number of cells per column in the proliferative and hypertrophic zones were significantly reduced compared to wild-types; however the total height of the growth plate was within normal values. The chondrocyte proliferation rate, measured by bromodeoxyuridine labelling, was also significantly reduced in mutant mice. Immunohistochemistry combined with expression data of the dtd growth plate demonstrated that the sulfation defect alters the distribution pattern, but not expression, of Indian hedgehog, a long range morphogen required for chondrocyte proliferation and differentiation.These data suggest that in dtd mice proteoglycan undersulfation causes reduced chondrocyte proliferation in the proliferative zone via the Indian hedgehog pathway, therefore contributing to reduced long bone growth.  相似文献   

19.
RS-8359, (+/-)-4-(4-cyanoanilino)-5,6-dihydro-7-hydroxy-7H-cyclopenta[d]-pyrimidine is a selective and reversible MAO-A inhibitor. The (S)-enantiomer of RS-8359 has been demonstrated to be inverted to the (R)-enantiomer after oral administration to rats. In the current study, we investigated the chiral inversion mechanism and the properties of involved enzymes using rat liver subcellular fractions. The 7-hydroxy function of RS-8359 was oxidized at least by the two different enzymes. The cytosolic enzyme oxidized enantiospecifically the (S)-enantiomer with NADP as a cofactor. On the other hand, the microsomal enzyme catalyzed more preferentially the oxidation of the (S)-enantiomer than the (R)-enantiomer with NAD as a cofactor. With to product enantioselectivity of reduction of the 7-keto derivative, it was found that only the alcohol bearing (R)-configuration was formed by the cytosolic enzyme with NADPH and the microsomal enzyme with NADH at almost equal rate. The reduction rate was much larger than the oxidation rate of 7-hydroxy group. The results suggest that the chiral inversion might occur via an enantioselectivity of consecutive two opposing reactions, oxidation and reduction of keto-alcohol group. In this case, the direction of chiral inversion from the (S)-enantiomer to the (R)-enantiomer is governed by the enantiospecific reduction of intermediate 7-keto group to the alcohol with (R)-configuration. The enzyme responsible for the enantiospecific reduction of the 7-keto group was purified from rat liver cytosolic fractions and identified as 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) via database search of peptide mass data obtained by nano-LC/MS/MS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号