首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca2+ transport by coupled Trypanosoma cruzi mitochondria in situ   总被引:1,自引:0,他引:1  
The use of digitonin to permeabilize Trypanosoma cruzi plasma membrane enabled us to study Ca2+ transport and oxidative phosphorylation in mitochondria in situ. Addition of Ca2+ to these preparations evoked a cycle of respiratory stimulation. Ca2+ uptake was partially inhibited by ruthenium red, almost totally inhibited by antimycin A, and stimulated by inorganic phosphate. Addition of carbonyl cyanide p-trifluoromethoxyphenylhydrazone to digitonin-permeabilized T. cruzi epimastigotes under steady-state conditions was followed by Ca2+ release. Antimycin A- and carbonyl cyanide p-trifluoromethoxyphenylhydrazonein-sensitive Ca2+ uptake was also detected in digitonin-permeabilized epimastigotes. Accordingly, ATP stimulated Ca2+ uptake by preparations de-energized by oligomycin and antimycin A. In conclusion, in contrast to previous reports indicating that a Ca2+ transport system occurs only in mitochondria from vertebrate tissues, T. cruzi epimastigotes also possess a similar system. In addition, these protozoan mitochondria have an extremely high resistance to the deleterious effects of massive Ca2+ loads in comparison with most types of mammalian mitochondria.  相似文献   

2.
Trypanosoma cruzi epimastigotes maintained an intracellular free calcium concentration of about 0.15 microM, as measured with the fluorescent indicator Fura-2. The maintenance of low [Ca2+]i is energy-dependent since it is disrupted by KCN and FCCP. When the cells were permeabilized with digitonin, the steady-state free Ca2+ concentration in the absence of ATP was about 0.7 microM. The additional presence of ATP resulted in a steady-state level close to 0.1-0.2 microM which compares favorably with the concentration detected in intact cells. Intracellular Ca2+ uptake at high levels of free Ca2+ (greater than 1 microM) was due to energy-dependent mitochondrial uptake as indicated by its FCCP-sensitivity. However, as the free Ca2+ concentration was lowered from 1 microM, essentially all uptake was due to the ATP-dependent Ca2+ sequestration by the endoplasmic reticulum as indicated by its stimulation by ATP, and its inhibition by sodium vanadate. High concentrations of the calmodulin antagonist trifluoperazine, inhibited both the Ca2+ uptake by the endoplasmic reticulum and by the mitochondria, while calmidazolium released Ca2+ from both compartments. In addition, trifluoperazine and calmidazolium inhibited respiration and collapsed the mitochondrial membrane potential of T. cruzi, thus indicating non-specific effects unrelated to calmodulin.  相似文献   

3.
Incubation of isolated rat hepatocytes with 0.1 mM iron nitrilotriacetic acid (FeNTA) caused a rapid rise in lipid peroxidation followed by a substantial increase in trypan blue staining and lactate dehydrogenase release, but did not affect the protein and non-protein thiol content of the cells. Hepatocyte death was preceded by the decline of mitochondrial membrane potential, as assayed by rhodamine 123 uptake, and by the depletion of cellular ATP. Chelation of extracellular Ca2+ by ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid or inhibition of Ca2+ cycling within the mitochondria by LaCl3 or cyclosporin A did not prevent the decline of rhodamine 123 uptake. On the other hand, a dramatic increase in the conjugated diene content was observed in mitochondria isolated from FeNTA-treated hepatocytes. Oxidative damage of mitochondria was accompanied by the leakage of matrix enzymes glutamic oxalacetic aminotransferase (GOT) and glutamate dehydrogenase (GLDH). The addition of the antioxidant N,N'-diphenylphenylene diamine (DPPD) completely prevented GOT and GLDH leakage, inhibition of rhodamine 123 uptake, and ATP depletion induced by FeNTA, indicating that Ca(2+)-independent alterations of mitochondrial membrane permeability consequent to lipid peroxidation were responsible for the loss of mitochondrial membrane potential. DPPD addition also protected against hepatocyte death. Similarly hepatocytes prepared from fed rats were found to be more resistant than those obtained from starved rats toward ATP depletion and cell death caused by FeNTA, in spite of undergoing a comparable mitochondrial injury. A similar protection was also observed following fructose supplementation of hepatocytes isolated from starved rats, indicating that the decline of ATP was critical for the development of FeNTA toxicity. From these results it was concluded that FeNTA-induced peroxidation of mitochondrial membranes impaired the electrochemical potential of these organelles and led to ATP depletion which was critical for the development of irreversible cell injury.  相似文献   

4.
Digitonin can be used to permeabilize selectively the plasma membrane of Trypanosoma cruzi epimastigotes without significantly affecting the functional integrity of mitochondria. Addition of digitonin at concentrations close to 64 microM caused decrease in the rate of basal respiration of epimastigotes similar to that caused by oligomycin. A further addition of carbonyl cyanide p-trifluorophenylhydrazone (FCCP) brought respiration to the same rate observed prior to the inclusion of digitonin or oligomycin. This suggests that like oligomycin, digitonin is shifting respiration to a nonphosphorylating state probably by depleting the cells from adenine nucleotides due to permeabilization of the plasma membrane. The use of low concentrations of digitonin allowed the quantitative determination of the mitochondrial membrane potential of these cells in situ using safranine O. The response of epimastigotes mitochondrial membrane potential to phosphate, FCCP, valinomycin, nigericin, ADP, and Ca2+ indicates that these mitochondria behave similarly to vertebrate mitochondria regarding the properties of their electrochemical proton gradient. In addition, T. cruzi mitochondria are able to build up and retain a membrane potential of a value comparable to that of mammalian mitochondria. The trypanocidal drug crystal violet, as well as other cationic drugs such as dequalinium, induced a rapid dose-related collapse of the inner mitochondrial membrane potential.  相似文献   

5.
The effect of Ca2+ on the rate of pyruvate carboxylation was studied in liver mitochondria from control and glucagon-treated rats, prepared under conditions that maintain low Ca2+ levels (1-3 nmol/mg of protein). When the matrix-free [Ca2+] was low (less than 100 nM), the rate of pyruvate carboxylation was not significantly different in mitochondria from control and glucagon-treated rats. Accumulation of 5-8 nmol of Ca2+/mg, which increased the matrix [Ca2+] to 2-5 microM in both preparations, significantly enhanced pyruvate carboxylase flux by 20-30% in the mitochondria from glucagon-treated rats, but had little effect in control preparations. Higher levels of Ca2+ (up to 75 nmol/mg) inhibited pyruvate carboxylation in both preparations, but the difference between the mitochondria from control and glucagon-treated animals was maintained. The enhancement of pyruvate dehydrogenase flux by mitochondrial Ca2+ uptake was also significantly greater in mitochondria from glucagon-treated rats. These differential effects of Ca2+ uptake on enzyme fluxes did not correlate with changes in the mitochondrial ATP/ADP ratio, the pyrophosphate level, or the matrix volume. Arsenite completely prevented 14CO2 incorporation when pyruvate was the only substrate, but caused only partial inhibition when succinate and acetyl carnitine were present as alternative sources of energy and acetyl-CoA. Under these conditions, mitochondria from glucagon-treated rats were less sensitive to arsenite than the control preparations, even at low Ca2+ levels. We conclude that the Ca(2+)-dependent enhancement of pyruvate carboxylation in mitochondria from glucagon-treated rats is a secondary consequence of pyruvate dehydrogenase activation; glucagon treatment is suggested to affect the conditions in the mitochondria that change the sensitivity of the pyruvate dehydrogenase complex to dephosphorylation by the Ca(2+)-sensitive pyruvate dehydrogenase phosphatase.  相似文献   

6.
Cell viability requires the perfect functioning of the processes controlling ATP and Ca(2+) homeostasis. It is known that cell death caused by a variety of toxins or pathological conditions is associated with a disruption of ATP and Ca(2+) homeostasis. This study shows that 4,4'-diisothyocyanatostilbene-2,2'-disulfonic acid (DIDS) inhibits Trypanosoma cruzi epimastigote cell growth. This thiol-reagent thiocyanate derivative was able to inhibit two ecto-enzymes present in this parasite. The ecto-ATPase and ecto-phosphatase activities were inhibited in a dose-dependent manner (K(i)=47.7 and 472.5 microM, respectively), but the 5'nucleotidase and 3'nucleotidase activities were not. DIDS uptake was approached by fluorescence microscopy. Pulse-chase experiments revealed the DIDS accumulation in compartments, presumably endocytic, in the posterior region of epimastigotes. In addition, we show that the T. cruzi mitochondria studied in permeabilized cells are able to accumulate and retain medium Ca(2+) in the absence of DIDS. However, in the presence of increasing concentrations of DIDS (50-200 microM), Ca(2+) transport was inhibited in a dose-dependent manner. DIDS also caused a disruption of the mitochondrial membrane potential, in the same concentration range, thus explaining its effect on Ca(2+) uptake. The presence of EGTA prevented the elimination of the mitochondrial membrane potential (DeltaPsi), supporting previous data suggesting that the binding of Ca(2+) to the mitochondrial membrane exposes buried thiols to react with DIDS. This thiocyanate derivative was also able to inhibit Ca(2+) uptake by the endoplasmic reticulum in a dose-dependent manner. Taken together, the data presented here provide further insights into the mechanisms underlying the antiproliferative actions of DIDS in T. cruzi.  相似文献   

7.
The effects of ethanol and other aliphatic alcohols on energy-dependent Ca2+ transport in endoplasmic reticulum and mitochondria were studied in digitonin-treated myometrium cells. The Ca2+ uptake in mitochondria increased (on 15-20%) with increasing methanol, ethanol and propanol concentrations in medium, whereas further rise of concentration inhibited this process. Treatments of myometrial cells with short-chain alcohols caused an inhibition of calcium uptake in endoplasmic reticulum. Butanol inhibited both calcium uptake in mitochondria and endoplasmic reticulum. Ca2+ accumulation in intracellular pools is inhibited by aliphatic alcohols in the following order of potency: butanol > propanol > ethanol > methanol. It is concluded that modifying effect of aliphatic alcohols on energy dependent calcium accumulation in intracellular membrane structures is defined as on origin of Ca(2+)-transporting system and (or) properties of these membrane structures so on properties of alcohols.  相似文献   

8.
Analysis of the initial rates of 45Ca2+ uptake by rat brain mitochondria in Ca2+-1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid buffers indicated that nontelencephalic mitochondria exhibited both a much less pronounced stimulatory effect of spermine and significantly more hyperbolic kinetics of Ca2+ uptake than telencephalic mitochondria. Nontelencephalic mitochondria were also markedly less susceptible to a Ca2+-induced hysteretic allosteric activation of the Ca2+ uniporter. A new Ca2+ loading procedure, which strikingly illustrates differences in mitochondrial Ca2+ buffering characteristics, is also described. In this procedure, low concentrations of Ca2+ (1, 2, or 5 microM) were repetitively added to mitochondria every 30 s while changes in free Ca2+ concentration were recorded. Spermine induced a marked attenuation of the rise in free Ca2+ level under these conditions. Steady-state rates of Ca2+ uptake were determined by a quantitative analysis of the buffering of repetitive Ca2+ additions, and, again, brain regional differences were qualitatively similar to those observed in the initial rate kinetics; Ca2+ uptake by nontelencephalic mitochondria in the steady state was markedly less responsive to stimulation by spermine and appeared to have a more hyperbolic dependence on Ca2+ in the absence of spermine. These results also suggest that there is a lag time in the activation of the uniporter by Ca2+, in addition to the hysteresis that has previously been observed in the deactivation of the uniporter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Trypanosomatids of the genus Herpetomonas comprises monoxenic parasites of insects that present pro- and opisthomastigotes forms in their life cycles. In this study, we investigated the Ca(2+) transport and the mitochondrial bioenergetic of digitonin-permeabilized Herpetomonas sp. promastigotes. The response of promastigotes mitochondrial membrane potential to ADP, oligomycin, Ca(2+), and antimycin A indicates that these mitochondria behave similarly to vertebrate and Trypanosoma cruzi mitochondria regarding the properties of their electrochemical proton gradient. Ca(2+) transport by permeabilized cells appears to be performed mainly by the mitochondria. Unlike T. cruzi, it was not possible to observe Ca(2+) release from Herpetomonas sp. mitochondria, probably due to the simultaneous Ca(2+) uptake by the endoplasmic reticulum. In addition, a vanadate-sensitive Ca(2+) transport system, attributed to the endoplasmic reticulum, was also detected. Nigericin (1 microM), FCCP (1 microM), or bafilomycin A(1) (5 microM) had no effect on the vanadate-sensitive Ca(2+) transport. These data suggest the absence of a Ca(2+) transport mediated by a Ca(2+)/H(+) antiport. No evidence of a third Ca(2+) compartment with the characteristics of the acidocalcisomes described by A. E. Vercesi et al. (1994, Biochem. J. 304, 227-233) was observed. Thapsigargin and IP(3) were not able to affect the vanadate-sensitive Ca(2+) transport. Ruthenium red was able to inhibit the Ca(2+) uniport of mitochondria, inducing a slow mitochondrial Ca(2+) efflux, compatible with the presence of a Ca(2+)/H(+) antiport. Moreover, this efflux was not stimulated by the addition of NaCl, which suggests the absence of a Ca(2+)/Na(+) antiport in mitochondria.  相似文献   

10.
Activation of calcium-ion (Ca2+) channels on the plasma membrane and on intracellular Ca2+ stores, such as the endoplasmic reticulum, generates local transient increases in the cytosolic Ca2+ concentration that induce Ca2+ uptake by neighbouring mitochondria. Here, by using mitochondrially targeted aequorin proteins with different Ca2+ affinities, we show that half of the chromaffin-cell mitochondria exhibit surprisingly rapid millimolar Ca2+ transients upon stimulation of cells with acetylcholine, caffeine or high concentrations of potassium ions. Our results show a tight functional coupling of voltage-dependent Ca2+ channels on the plasma membrane, ryanodine receptors on the endoplasmic reticulum, and mitochondria. Cell stimulation generates localized Ca2+ transients, with Ca2+ concentrations above 20-40 microM, at these functional units. Protonophores abolish mitochondrial Ca2+ uptake and increase stimulated secretion of catecholamines by three- to fivefold. These results indicate that mitochondria modulate secretion by controlling the availability of Ca2+ for exocytosis.  相似文献   

11.
Mitochondrial Ca2+ (mCa2+) handling is an important regulator of liver cell function that controls events ranging from cellular respiration and signal transduction to apoptosis. Cytosolic Ca2+ enters mitochondria through the ruthenium red-sensitive mCa2+ uniporter, but the mechanisms governing uniporter activity are unknown. Activation of many Ca2+ channels in the cell membrane requires PLC. This activation commonly occurs through phosphitidylinositol-4,5-biphosphate (PIP2) hydrolysis and the production of the second messengers inositol 1,4,5-trisphosphate [I(1,4,5)P3] and 1,2-diacylglycerol (DAG). PIP2 was recently identified in mitochondria. We hypothesized that PLC exists in liver mitochondria and regulates mCa2+ uptake through the uniporter. Western blot analysis with anti-PLC antibodies demonstrated the presence of PLC-delta1 in pure preparations of mitochondrial membranes isolated from rat liver. In addition, the selective PLC inhibitor U-73122 dose-dependently blocked mCa2+ uptake when whole mitochondria were incubated at 37 degrees C with 45Ca2+. Increasing extra mCa2+ concentration significantly stimulated mCa2+ uptake, and U-73122 inhibited this effect. Spermine, a uniporter agonist, significantly increased mCa2+ uptake, whereas U-73122 dose-dependently blocked this effect. The inactive analog of U-73122, U-73343, did not affect mCa2+ uptake in any experimental condition. Membrane-permeable I(1,4,5)P3 receptor antagonists 2-aminoethoxydiphenylborate and xestospongin C also inhibited mCa2+ uptake. Although extra mitochondrial I(1,4,5)P3 had no effect on mCa2+ uptake, membrane-permeable DAG analogs 1-oleoyl-2-acetyl-sn-glycerol and DAG-lactone, which inhibit PLC activity, dose-dependently inhibited mCa2+ uptake. These data indicate that PLC-delta1 exists in liver mitochondria and is involved in regulating mCa2+ uptake through the uniporter.  相似文献   

12.
Using flow cytometric analysis and potential-sensitive fluorescent dye TMRM Ca2+ -induced changes of membrane potential of isolated smooth muscle mitochondria were studied. It was shown, that Ca2+ (100 microM) addition to the incubation medium induced mitochondrial membrane depolarization that probably could be explained by Ca2+/H+ -exchanger activation which functioning lead to membrane potential dissipation. In the case of ruthenium red (10 microM) preliminary presence in incubation medium, Ca2+ (100 microM) addition did not lead to membrane potential dissipation. Hence, membrane potential dissipation was caused by an increase of matrix Ca2+ concentration. In the presence of Mg2+ (3 mM) and ATP (3 mM), Ca2+ addition did not cause depolarization. It was supposed that in this case ATP synthase acted in the opposite direction as H+ -pump and prevented from mitochondrial membrane potential dissipation. Thus, the flow cytometry method allows to register membrane potential of isolated smooth muscle mitochondria and also to test the effectors, capable to modulate this parameter.  相似文献   

13.
Kinetic analysis of 45Ca2+ uptake by rat brain mitochondria in Ca2+ - 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid buffers indicated that spermine both increased the apparent affinity for Ca2+ and decreased the cooperativity of uptake. Both effects are consistent with an allosteric activation of uptake by spermine. The stimulating effect of spermine on 45Ca2+ uptake was maximal with mitochondria from postnatal day 10 animals and then steadily decreased with increasing age to reach adult values by approximately 30 postnatal days; this was observed independently of the substrates used to fuel mitochondria. Mitochondrial Ca2+ buffering was also analyzed by use of a Ca2+-selective electrode. Addition of a large bolus of Ca2+ produced a decrease in the subsequent equilibrium extramitochondrial Ca2+ concentration (or a "rebound overshoot") under some conditions. It is proposed that this effect is the result of an allosteric activation of Ca2+ uptake by Ca2+. This effect was slowly reversible, or hysteretic, and was blocked by spermine. The overshoot was increased in the presence of higher concentrations of Mg2+ and was absent when mitochondria were incubated with 0.3 mM Mg2+. It was maximal in mitochondria prepared from early postnatal brain, and changes in the magnitude of the effect during development paralleled those obtained with spermine stimulation of 45Ca2+ uptake. The data suggest that spermine produces an allosteric activation of Ca2+ uptake by binding to the same regulatory sites that are involved in the Ca2+-induced activation. The results as a whole suggest that spermine could modulate mitochondrial buffering of the intracellular Ca2+ concentration in brain, particularly during the early postnatal period.  相似文献   

14.
The Ca2+ content of hepatocytes from juvenile male rats (80-110 g) or adult female rats (135-155 g) displayed a biphasic dose-response curve to epinephrine. Low concentrations (less than or equal to 10(-7) M) caused efflux of Ca2+ from the cells, while higher concentrations (10(-6) M and 10(-5) M) induced net Ca2+ uptake which correlated with a large beta 2-adrenergic-mediated increase in cAMP (Morgan, N. G., Blackmore, P. F., and Exton, J. H. (1983) J. Biol. Chem. 258, 5103-5109). Calcium accumulation could be induced in cells from older male rats (180-230 g) by combining a Ca2+-mobilizing hormone with either exogenous cAMP or glucagon (10(-8) M). Readdition of Ca2+ in the presence of glucagon to cells treated with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid also resulted in enhanced Ca2+ accumulation compared with controls. Addition of vasopressin plus glucagon to the medium perfusing male rat livers also led to cell Ca2+ accumulation, as evidenced by uptake of Ca2+ from the perfusate. Incubation of hepatocytes with antimycin A, oligomycin, and carbonyl cyanide m-chlorophenylhydrazone prevented net Ca2+ accumulation suggesting that mitochondria play a role in the uptake response. This was confirmed by isolation of mitochondria from cells incubated under conditions which promote Ca2+ accumulation. Within 5 min of incubation, the Ca2+ content of these mitochondria was increased 2-fold relative to controls, an effect which was inhibited by oligomycin. These studies demonstrate that a rise in hepatic cAMP can reverse hormonally induced Ca2+ mobilization and point to a major role for the mitochondria in this effect.  相似文献   

15.
ATP-dependent Ca2+ uptake was investigated at low Ca2+ concentrations (10 microM) in rat retinal synaptosomal and mitochondrial preparations obtained by differential centrifugation on Ficoll gradients. Ca2+ uptake in the synaptosomal and mitochondrial subcellular preparations was stimulated by ATP and additionally stimulated by ATP plus taurine. The ATP-dependent and taurine-stimulated ATP-dependent Ca2+ uptakes were inhibited by mitochondrial metabolic inhibitors (atractyloside, oligomycin, and ruthenium red). These metabolic inhibitors had a greater effect on the ATP-dependent and taurine-stimulated ATP-dependent Ca2+ uptake activities in the mitochondrial preparation than in the synaptosomal preparation. ATP-dependent Ca2+ uptake in a synaptosomal subfraction obtained by osmotic shock was only partially inhibited by atractyloside. ATP-dependent Ca2+ uptake in the synaptosomal subfraction was also stimulated by taurine but to a lesser extent than in either the synaptosomal or mitochondrial preparation. These studies suggest that mitochondria are primarily responsible for taurine-stimulated ATP-dependent Ca2+ uptake in synaptosomal preparations.  相似文献   

16.
Ruthenium red and/or EGTA prevent cyclic uptake and release of Ca2+ in mitochondria. These compounds inhibit but do not prevent the swelling of liver mitochondria induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. Ruthenium red and/or EGTA have complex effects on the release rate of Ca2+ and other cations induced by t-butyl hydroperoxide or N-ethylmaleimide. To determine the relationship between permeability changes and Ca2+ release in the absence of Ca2+ cycling, a novel method of data collection and analysis is developed which allows the relative time courses of Ca2+ release and Mg2+ release or swelling to be accurately and quantitatively compared. This method eliminates errors in time course comparisons which arise from the aging of mitochondrial preparations and allows data from different preparations to be directly contrasted. Using the method, it is shown that permeability changes caused by Ca2+-releasing agents are not secondary effects arising from Ca2+ cycling between uptake and release carriers. In the absence of Ca2+-cycling inhibitors, Ca2+ release induced by t-butyl hydroperoxide or N-ethylmaleimide is, in part, carrier-mediated. In the presence of EGTA and ruthenium red, Ca2+ release induced by either agent is mediated solely by the permeability pathway. No differences are apparent in the solute selectivity of the inner membrane permeability defect induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. A novel type of Ca2+ release from energized liver mitochondria is reported. This release is induced by EGTA, occurs in the absence of other releasing agents or nonspecific permeability changes, and is rapid (greater than or equal to 50 nmol/min/mg protein).  相似文献   

17.
In intact guinea pig parietal cells, gastrin or compound 48/80 caused an initial increase in cytosolic Ca2+ concentration and subsequent acid secretion, owing to release of intracellulary stored Ca2+ besides the Ca2+ entry from the extracellular space. However, the maximum gastrin-induced Ca2+ entry into the cell was delayed by 60 min, a time which coincided with sustained acid secretion (by gastrin) that was dependent on medium Ca2+. On the other hand, there are two ATP-dependent Ca2+-removal systems detected in either plasmalemma or smooth surfaced membrane besides that of mitochondria. The plasmalemmal Ca2+-removal system was dependent on calmodulin. Smooth surfaced membrane vesicles caused an ATP-dependent Ca2+ uptake that was almost similar to that taken by saponin-permiabilized cell. In this system (permeable cell), myo-inositol 1,4,5-triphosphate (InsP3) caused the release of ATP-accumulated Ca2+ into the cytosol, suggesting an ATP-dependent and InsP3-sensitive Ca2+ pool(s) is in or near the smooth surfaced membranes. The ATP-dependent Ca2+ uptake by vesicles was markedly enhanced by the stimulation of cells with gastrin, compound 48/80, or EDTA. The increase of this Ca2+ uptake in stimulated cells by plasmalemmal vesicles exceeded that by smooth surfaced ones. The increase of the Ca2+ uptake by plasmalemmal vesicles was abolished by the cease of intracellular Ca2+ release without Ca2+ entry. In addition, gastrin or compound 48/80 evoked an early Ca2+ efflux across the plasma membrane owing to a pump that was independent of medium Ca2+ in intact cells. These results suggest that in the first acid secretion by gastrin or others, the Ca2+ released, which may be derived from an ATP-dependent and InsP3-sensitive Ca2+ pool, is mainly pumped out by the plasmalemmal Ca2+-removal system rather than the intracellular Ca2+-removal system; whereas the sustained acid secretion by gastrin required medium Ca2+ and in this phase, Ca2+ efflux across the plasma membrane became lower, suggesting that an ATP-dependent Ca2+ pool may be replenished by Ca2+ entering from the extracellular space.  相似文献   

18.
The effects of Reye's plasma, allantoin, and salicylates on mitochondrial structure and Ca2+ transport have been investigated. Measurements of Ca2+ transport showed that when 20-30 microM Ca2+ was added to isolated rat liver mitochondria preincubated with one of these agents, Ca2+ uptake was followed by its spontaneous release into the medium. This was accompanied by large-amplitude swelling; the onset preceded the Ca2+ release. No further Ca2+ release was induced by uncoupler or the Ca2+ ionophore, A23187. The mitochondria continued to swell even after all of the Ca2+ had been released. The time between the addition of Ca2+ and the onset of swelling (or Ca2+ release) depended on the concentration of the agent added and the preincubation time; the extent of swelling did not. These effects were prevented, but not reversed, by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid, ruthenium red, rotenone, or adenine nucleotides. The massive swelling and membrane disruption were confirmed by electron microscopy of the treated vs untreated mitochondria. Similar results concerning swelling and Ca2+ release were also seen with Ca2+ alone, but the time scale was much longer (i.e., greater than 3-4 min), indicating that these agents act by potentiating Ca2+-induced alterations in mitochondrial structure, as suggested by our earlier work (T.Y. Segalman and C.P. Lee (1982) Arch. Biochem. Biophys. 214, 522-530; M.E. Martens and C.P. Lee (1984) Biochem. Pharmacol. 33, 2869-2876). Our data show, therefore, that allantoin, salicylates, and the "toxic" agent in Reye's plasma severely limit the ability of isolated rat liver mitochondria to maintain their structural integrity under conditions of limited Ca2+ loading.  相似文献   

19.
A method is described for the preparation of ;free' and ;synaptosomal' brain mitochondria from fractions of guinea-pig cerebral cortex respectively depleted and enriched in synaptosomes. Both preparations of mitochondria have a low membrane H(+) conductance, a high capacity to phosphorylate ADP, and a capacity to accumulate Ca(2+) at rates limited by the activity of the respiratory chain. Ca(2+) transport by ;free' brain mitochondria is compared with that of heart mitochondria. The Ca(2+) conductance of ;free' brain mitochondria was at least 20 times that for rat heart mitochondria. Ca(2+) uptake by brain mitochondria increased the pH gradient and decreased membrane potential, whereas little change occurred during the much slower uptake by heart mitochondria. In the presence of ionophore A23187, dissipative Ca(2+) cycling decreased the H(+) electrochemical potential gradient of brain mitochondria from 190 to 60mV, but caused only a slight decrease with heart mitochondria, although the ionophore lowered the pH gradient and increased membrane potential. The Ca(2+) conductance of ;free' brain mitochondria is distinctive in showing a hyperbolic dependency on free Ca(2+) concentration. In the presence of Ruthenium Red, a rapid Na(+)-dependent Ca(2+) efflux occurs. The H(+) electrochemical potential gradient is maintained during this efflux, and membrane potential increases, with both ;free' brain and heart mitochondria. The Na(+) requirement for Ca(2+) efflux appears not to be related to the high Na(+)/H(+) exchange activity but may represent a direct exchange of Na(+) for Ca(2+).  相似文献   

20.
1. A depolarisation of the membrane of rat liver mitochondria, as measured with the safranine method, is seen during Ca2+ uptake. The depolarisation is followed by a slow repolarisation, the rate of which can be increased by the addition of EGTA or phosphate. 2. Plots relating the initial rate of calcium ion (Ca2+) uptake and the decrease in membrane potential (delta psi) to the Ca2+ concentration show a half-maximal change at less than 10 micron Ca2+ and a saturation above 20 micron Ca2+. 3. Plots relating the initial rate of Ca2+ uptake to delta psi are linear. 4. Addition of Ca2+ chelators, nitriloacetate or EGTA, to deenergized mitochondria equilibrated with Ca2+ causes a polarisation of the mitochondrial membrane due to a diffusion potential created by electrogenic Ca2+ efflux. 5. If the extent of the response induced by different nitriloacetate concentrations is plotted against the expected membrane potential a linear plot is obtained up to 70 mV with a slope corresponding to two-times the extent of the response induced by valinomycin in the presence of different potassium ion gradients. This suggests that the Ca2+ ion is transferred across the membrane with one net positive charge in present conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号