首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported the de novo design of combinatorial libraries of proteins targeted to fold into four-helix bundles. The sequences of these proteins were designed using a binary code strategy in which each position in the linear sequence is designated as either polar or nonpolar, but the exact identity of the amino acid at each position is varied combinatorially. We subsequently reported that approximately half of these binary coded proteins were capable of binding heme. These de novo heme-binding proteins showed CO binding characteristics similar to natural heme proteins, and several were active as peroxidases. Here we analyze the midpoint reduction potentials and heme binding stoichiometries of several of these de novo heme proteins. All the proteins bound heme with a 1:1 stoichiometry. The reduction potentials ranged from -112 to -176 mV. We suggest that this represents an estimate of the default range of potentials for heme proteins that have neither been prejudiced by rational design nor selected by evolution.  相似文献   

2.
Binary patterning of polar and nonpolar amino acids has been used as the key design feature for constructing large combinatorial libraries of de novo proteins. Each position in a binary patterned sequence is designed explicitly to be either polar or nonpolar; however, the precise identities of these amino acids are varied extensively. The combinatorial underpinnings of the "binary code" strategy preclude explicit design of particular side chains at specified positions. Therefore, packing interactions cannot be specified a priori. To assess whether the binary code strategy can nonetheless produce well-folded de novo proteins, we constructed a second-generation library based upon a new structural scaffold designed to fold into 102-residue four-helix bundles. Characterization of five proteins chosen arbitrarily from this new library revealed that (1) all are alpha-helical and quite stable; (2) four of the five contain an abundance of tertiary interactions indicative of well-ordered structures; and (3) one protein forms a well-folded structure with native-like features. The proteins from this new 102-residue library are substantially more stable and dramatically more native-like than those from an earlier binary patterned library of 74-residue sequences. These findings demonstrate that chain length is a crucial determinant of structural order in libraries of de novo four-helix bundles. Moreover, these results show that the binary code strategy--if applied to an appropriately designed structural scaffold--can generate large collections of stably folded and/or native-like proteins.  相似文献   

3.
Roy S  Hecht MH 《Biochemistry》2000,39(16):4603-4607
We previously reported a combinatorial strategy for designing alpha-helical proteins by assigning only the binary patterning of polar or nonpolar residues [Kamtekar, S., Schiffer, J. M., Xiong, H. Y., Babik, J. M., and Hecht, M. H. (1993) Science 262, 1680-1685]. Here we describe the finding that approximately half of the proteins in the original collection display some level of cooperativity in their thermal denaturation profiles. Many are monomeric in solution, demonstrating that the observed cooperativity is not merely a consequence of oligomerization. These findings demonstrate that although the combinatorial nature of the design strategy precludes explicit design of side-chain packing, binary patterning incorporates sufficient sequence information to generate de novo proteins with cooperatively folded structures. As binary partitioning of polar and nonpolar amino acids is an intrinsic part of the genetic code, these findings may bear on the early evolution of native proteins.  相似文献   

4.
De novo proteins from designed combinatorial libraries   总被引:4,自引:0,他引:4  
Combinatorial libraries of de novo amino acid sequences can provide a rich source of diversity for the discovery of novel proteins with interesting and important activities. Randomly generated sequences, however, rarely fold into well-ordered proteinlike structures. To enhance the quality of a library, features of rational design must be used to focus sequence diversity into those regions of sequence space that are most likely to yield folded structures. This review describes how focused libraries can be constructed by designing the binary pattern of polar and nonpolar amino acids to favor proteins that contain abundant secondary structure, while simultaneously burying hydrophobic side chains and exposing hydrophilic side chains to solvent. The "binary code" for protein design was used to construct several libraries of de novo proteins, including both alpha-helical and beta-sheet structures. The recently determined solution structure of a binary patterned four-helix bundle is well ordered, thereby demonstrating that sequences that have neither been selected by evolution (in vivo or in vitro) nor designed by computer can form nativelike proteins. Examples are presented demonstrating how binary patterned libraries have successfully produced well-ordered structures, cofactor binding, catalytic activity, self-assembled monolayers, amyloid-like nanofibrils, and protein-based biomaterials.  相似文献   

5.
Protein sequences can be represented as binary patterns of polar (○) and nonpolar (?) amino acids. These binary sequence patterns are categorized into two classes: Class A patterns match the structural repeat of an idealized amphiphilic α-helix (3.6 residues per turn), and class B patterns match the structural repeat of an idealized amphiphilic β-strand (2 residues per turn). The difference between these two classes of sequence patterns has led to a strategy for de novo protein design based on binary patterning of polar and nonpolar amino acids. Here we ask whether similar binary patterning is incorporated in the sequences and structures of natural proteins. Analysis of the Protein Data Bank demonstrates the following. (1) Class A sequence patterns occur considerably more frequently in the sequences of natural proteins than would be expected at random, but class B patterns occur less often than expected. (2) Each pattern is found predominantly in the secondary structure expected from the binary strategy for protein design. Thus, class A patterns are found more frequently in α-helices than in β-strands, and class B patterns are found more frequently in β-strands than in α-helices. (3) Among the α-helices of natural proteins, the most commonly used binary patterns are indeed the class A patterns. (4) Among all β-strands in the database, the most commonly used binary patterns are not the expected class B patterns. (5) However, for solvent-exposed β-strands, the correlation is striking: All β-strands in the database that contain the class B patterns are exposed to solvent. (6) The bias of class A patterns for α-structure over β-structure and the bias of class B patterns for β-structure over α-structure are significant, not merely when compared to other binary patterns of polar (○) and nonpolar (?) amino acids, but also when compared to the full range of sequences in the database. The implications for the design of novel proteins are discussed.  相似文献   

6.
Heme proteins can perform a variety of electrochemical functions. While natural heme proteins carry out particular functions selected by biological evolution, artificial heme proteins, in principle, can be tailored to suit specified technological applications. Here we describe initial characterization of the electrochemical properties of a de novo heme protein, S824C. Protein S824C is a four-helix bundle derived from a library of sequences that was designed by binary patterning of polar and nonpolar amino acids. Protein S824C was immobilized on a gold electrode and the formal potential of heme-protein complex was studied as a function of pH and ionic strength. The binding of exogenous N-donor ligands to heme/S824C was monitored by measuring shifts in the potential that occurred upon addition of various concentrations of imidazole or pyridine derivatives. The response of heme/S824C to these ligands was then compared to the response of isolated heme (without protein) to the same ligands. The observed shifts in potential depended on both the concentration and the structure of the added ligand. Small changes in structure of the ligand (e.g. pyridine versus 2-amino pyridine) produced significant shifts in the potential of the heme-protein. The observed shifts correlate to the differential binding of the N-donor molecules to the oxidized and reduced states of the heme. Further, it was observed that the electrochemical response of the buried heme in heme/S824C differed significantly from that of isolated heme. These studies demonstrate that the structure of the de novo protein modulates the binding of N-donor ligands to heme.  相似文献   

7.
To probe the potential for enzymatic activity in unevolved amino acid sequence space, we created a combinatorial library of de novo 4‐helix bundle proteins. This collection of novel proteins can be considered an “artificial superfamily” of helical bundles. The superfamily of 102‐residue proteins was designed using binary patterning of polar and nonpolar residues, and expressed in Escherichia coli from a library of synthetic genes. Sequences from the library were screened for a range of biological functions including heme binding and peroxidase, esterase, and lipase activities. Proteins exhibiting these functions were purified and characterized biochemically. The majority of de novo proteins from this superfamily bound the heme cofactor, and a sizable fraction of the proteins showed activity significantly above background for at least one of the tested enzymatic activities. Moreover, several of the designed 4‐helix bundles proteins showed activity in all of the assays, thereby demonstrating the functional promiscuity of unevolved proteins. These studies reveal that de novo proteins—which have neither been designed for function, nor subjected to evolutionary pressure (either in vivo or in vitro)—can provide rudimentary activities and serve as a “feedstock” for evolution.  相似文献   

8.
Successful approaches of de novo protein design suggest a great potential to create novel structural folds and to understand natural rules of protein folding. For these purposes, smaller and simpler de novo proteins have been developed. Here, we constructed smaller proteins by removing the terminal sequences from stable de novo vTAJ proteins and compared stabilities between mutant and original proteins. vTAJ proteins were screened from an α3β3 binary-patterned library which was designed with polar/ nonpolar periodicities of α-helix and β-sheet. vTAJ proteins have the additional terminal sequences due to the method of constructing the genetically repeated library sequences. By removing the parts of the sequences, we successfully obtained the stable smaller de novo protein mutants with fewer amino acid alphabets than the originals. However, these mutants showed the differences on ANS binding properties and stabilities against denaturant and pH change. The terminal sequences, which were designed just as flexible linkers not as secondary structure units, sufficiently affected these physicochemical details. This study showed implications for adjusting protein stabilities by designing N- and C-terminal sequences.  相似文献   

9.
A central challenge of synthetic biology is to enable the growth of living systems using parts that are not derived from nature, but designed and synthesized in the laboratory. As an initial step toward achieving this goal, we probed the ability of a collection of >10(6) de novo designed proteins to provide biological functions necessary to sustain cell growth. Our collection of proteins was drawn from a combinatorial library of 102-residue sequences, designed by binary patterning of polar and nonpolar residues to fold into stable 4-helix bundles. We probed the capacity of proteins from this library to function in vivo by testing their abilities to rescue 27 different knockout strains of Escherichia coli, each deleted for a conditionally essential gene. Four different strains--ΔserB, ΔgltA, ΔilvA, and Δfes--were rescued by specific sequences from our library. Further experiments demonstrated that a strain simultaneously deleted for all four genes was rescued by co-expression of four novel sequences. Thus, cells deleted for ~0.1% of the E. coli genome (and ~1% of the genes required for growth under nutrient-poor conditions) can be sustained by sequences designed de novo.  相似文献   

10.
Recent experiments with combinatorial libraries of de novo proteins have demonstrated that sequences designed to contain polar and non-polar amino acid residues arranged in an alternating pattern form fibrillar structures resembling beta-amyloid. This finding prompted us to probe the distribution of alternating patterns in the sequences of natural proteins. Analysis of a database of 250,514 protein sequences (79,708,024 residues) for all possible binary patterns of polar and non-polar amino acid residues revealed that alternating patterns occur significantly less often than other patterns with similar compositions. The under-representation of alternating binary patterns in natural protein sequences, coupled with the observation that such patterns promote amyloid-like structures in de novo proteins, suggests that sequences of alternating polar and non-polar amino acids are inherently amyloidogenic and consequently have been disfavored by evolutionary selection.  相似文献   

11.
A central goal of protein design is to devise novel proteins for applications in biotechnology and medicine. Many applications, including those focused on sensing and catalysis will require proteins that recognize and bind to small molecules. Here, we show that stably folded α-helical proteins isolated from a binary patterned library of designed sequences can be mutated to produce binding sites capable of binding a range of small aromatic compounds. Specifically, we mutated two phenylalanine side chains to alanine in the known structure of de novo protein S-824 to create buried cavities in the core of this four-helix bundle. The parental protein and the Phe→Ala variants were exposed to mixtures of compounds, and selective binding was assessed by saturation transfer difference NMR. The affinities of benzene and a number of its derivatives were determined by pulse field gradient spin echo NMR, and several of the compounds were shown to bind the mutated protein with micromolar dissociation constants. These studies suggest that stably folded de novo proteins from binary patterned libraries are well-suited as scaffolds for the design of binding sites.  相似文献   

12.
Libraries of de novo proteins provide an opportunity to explore the structural and functional potential of biological molecules that have not been biased by billions of years of evolutionary selection. Given the enormity of sequence space, a rational approach to library design is likely to yield a higher fraction of folded and functional proteins than a stochastic sampling of random sequences. We previously investigated the potential of library design by binary patterning of hydrophobic and hydrophilic amino acids. The structure of the most stable protein from a binary patterned library of de novo 4-helix bundles was solved previously and shown to be consistent with the design. One structure, however, cannot fully assess the potential of the design strategy, nor can it account for differences in the stabilities of individual proteins. To more fully probe the quality of the library, we now report the NMR structure of a second protein, S-836. Protein S-836 proved to be a 4-helix bundle, consistent with design. The similarity between the two solved structures reinforces previous evidence that binary patterning can encode stable, 4-helix bundles. Despite their global similarities, the two proteins have cores that are packed at different degrees of tightness. The relationship between packing and dynamics was probed using the Modelfree approach, which showed that regions containing a high frequency of chemical exchange coincide with less well-packed side chains. These studies show (1) that binary patterning can drive folding into a particular topology without the explicit design of residue-by-residue packing, and (2) that within a superfamily of binary patterned proteins, the structures and dynamics of individual proteins are modulated by the identity and packing of residues in the hydrophobic core.  相似文献   

13.
We use a recently developed coarse-grained computational model to investigate the relative stability of two different sets of de novo designed four-helix bundle proteins. Our simulations suggest a possible explanation for the experimentally observed increase in stability of the four-helix bundles with increasing sequence length. In details, we show that both short subsequences composed only by polar residues and additional nonpolar residues inserted, via different point mutations in ad hoc positions, seem to play a significant role in stabilizing the four-helix bundle conformation in the longer sequences. Finally, we propose an additional mutation that rescues a short amino acid sequence that would otherwise adopt a compact misfolded state. Our work suggests that simple computational models can be used as a complementary tool in the design process of de novo proteins.  相似文献   

14.
Negron C  Fufezan C  Koder RL 《Proteins》2009,74(2):400-416
Helical bundles which bind heme and porphyrin cofactors have been popular targets for cofactor-containing de novo protein design. By analyzing a highly nonredundant subset of the protein databank we have determined a rotamer distribution for helical histidines bound to heme cofactors. Analysis of the entire nonredundant database for helical sequence preferences near the ligand histidine demonstrated little preference for amino acid side chain identity, size, or charge. Analysis of the database subdivided by ligand histidine rotamer, however, reveals strong preferences in each case, and computational modeling illuminates the structural basis for some of these findings. The majority of the rotamer distribution matches that predicted by molecular simulation of a single porphyrin-bound histidine residue placed in the center of an all-alanine helix, and the deviations explain two prominent features of natural heme protein binding sites: heme distortion in the case of the cytochromes C in the m166 histidine rotamer, and a highly prevalent glycine residue in the t73 histidine rotamer. These preferences permit derivation of helical consensus sequence templates which predict optimal side chain-cofactor packing interactions for each rotamer. These findings thus promise to guide future design endeavors not only in the creation of higher affinity heme and porphyrin binding sites, but also in the direction of bound cofactor geometry.  相似文献   

15.
Only a minute fraction of all possible protein sequences can exist in the genomes of all life forms. To explore whether physicochemical constraints or a lack of need causes the paucity of different protein folds, we set out to construct protein libraries without any restriction of topology. We generated different libraries (all alpha-helix, all beta-strand, and alpha-helix plus beta-strand) with an average length of 100 amino acid residues, composed of designed secondary structure modules (alpha-helix, beta-strand, and beta-turn) in various proportions, based primarily on the patterning of polar and nonpolar residues. We wished to explore that part of sequence space that is rich in secondary structure. The analysis of randomly chosen clones from each of the libraries showed that, despite the low sequence homology to known protein sequences, a substantial proportion of the library members containing alpha-helix modules were indeed helical, possess a defined oligomerization state, and showed cooperative chemical unfolding behavior. On the other hand, proteins composed of mainly beta-strand modules tended to form amyloid-like fibrils and were among the least soluble proteins ever reported. We found that a large fraction of members in non-beta-strand-containing protein libraries that are distant from natural proteins in sequence space possess unexpectedly favorable properties. These results reinforce the efficacy of applying binary patterning to design proteins with native-like properties despite lack of restriction in topology. Because of the intrinsic tendency of beta-strand modules to aggregate, their presence requires precise topologic arrangement to prevent fibril formation.  相似文献   

16.
De novo peptide sequencing via tandem mass spectrometry.   总被引:10,自引:0,他引:10  
Peptide sequencing via tandem mass spectrometry (MS/MS) is one of the most powerful tools in proteomics for identifying proteins. Because complete genome sequences are accumulating rapidly, the recent trend in interpretation of MS/MS spectra has been database search. However, de novo MS/MS spectral interpretation remains an open problem typically involving manual interpretation by expert mass spectrometrists. We have developed a new algorithm, SHERENGA, for de novo interpretation that automatically learns fragment ion types and intensity thresholds from a collection of test spectra generated from any type of mass spectrometer. The test data are used to construct optimal path scoring in the graph representations of MS/MS spectra. A ranked list of high scoring paths corresponds to potential peptide sequences. SHERENGA is most useful for interpreting sequences of peptides resulting from unknown proteins and for validating the results of database search algorithms in fully automated, high-throughput peptide sequencing.  相似文献   

17.
Klepeis JL  Wei Y  Hecht MH  Floudas CA 《Proteins》2005,58(3):560-570
Ab initio structure prediction and de novo protein design are two problems at the forefront of research in the fields of structural biology and chemistry. The goal of ab initio structure prediction of proteins is to correctly characterize the 3D structure of a protein using only the amino acid sequence as input. De novo protein design involves the production of novel protein sequences that adopt a desired fold. In this work, the results of a double-blind study are presented in which a new ab initio method was successfully used to predict the 3D structure of a protein designed through an experimental approach using binary patterned combinatorial libraries of de novo sequences. The predicted structure, which was produced before the experimental structure was known and without consideration of the design goals, and the final NMR analysis both characterize this protein as a 4-helix bundle. The similarity of these structures is evidenced by both small RMSD values between the coordinates of the two structures and a detailed analysis of the helical packing.  相似文献   

18.
19.
The characteristics of heme prosthetic groups and their binding sites have been analyzed in detail in a data set of nonhomologous heme proteins. Variations in the shape, volume, and chemical composition of the binding site, in the mode of heme binding and in the number and nature of heme–protein interactions are found to result in significantly different heme environments in proteins with different functions in biology. Differences are also seen in the properties of the apo states of the proteins. The apo states of proteins that bind heme permanently in their functional form show some disorder, ranging from local unfolding in the heme binding pocket to complete unfolding to give a random coil. In contrast, proteins that bind heme transiently are fully folded in their apo and holo states, presumably allowing both apo and holo forms to remain biologically active resisting aggregation or proteolysis. The principles identified here provide a framework for the design of de novo proteins that will exhibit tight heme ligand binding and for the identification of the function of structural genomic target proteins with heme ligands. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Several studies have highlighted the leading role of the sequence periodicity of polar and nonpolar amino acids (binary patterns) in the formation of regular secondary structures (RSS). However, these were based on the analysis of only a few simple cases, with no direct mean to correlate binary patterns with the limits of RSS. Here, HCA‐derived hydrophobic clusters (HC) which are conditioned binary patterns whose positions fit well those of RSS, were considered. All the HC types, defined by unique binary patterns, which were commonly observed in three‐dimensional (3D) structures of globular domains, were analyzed. The 180 HC types with preferences for either α‐helices or β‐strands distinctly contain basic binary units typical of these RSS. Therefore a general trend supporting the “binary pattern preference” assumption was observed. HC for which observed RSS are in disagreement with their expected behavior (discordant HC) were also examined. They were separated in HC types with moderate preferences for RSS, having “weak” binary patterns and versatile RSS and HC types with high preferences for RSS, having “strong” binary patterns and then displaying nonpolar amino acids at the protein surface. It was shown that in both cases, discordant HC could be distinguished from concordant ones by well‐differentiated amino acid compositions. The obtained results could, thus, help to complement the currently available methods for the accurate prediction of secondary structures in proteins from the only information of a single amino acid sequence. This can be especially useful for characterizing orphan sequences and for assisting protein engineering and design. Proteins 2016; 84:624–638. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号