首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The evolution of minor vein phloem and phloem loading   总被引:1,自引:0,他引:1  
Phylogenetic analysis provides a rational basis for comparative studies of phloem structure and phloem loading. Although several types of minor vein companion cell have been identified, and progress has been made in correlating structural features of these cells with loading mechanisms, little is known about the phylogenetic relationships of the different types. To add to the available data on companion cells, we analyzed the ultrastructure of minor veins in Euonymus fortunei and Celastrus orbiculatis (Celastraceae) leaves and determined that in these species they are specialized as intermediary cells. This cell type has been implicated in symplastic phloem loading. The data were added to published data sets on minor vein phloem characteristics, which were then mapped to a well-supported molecular tree. The analysis indicates that extensive plasmodesmatal continuity between minor vein phloem and surrounding cells is ancestral in the angiosperms. Reduction in plasmodesmatal frequency at this interface is a general evolutionary trend, punctuated by instances of the reverse. This is especially true in the case of intermediary cells that have many plasmodesmata, but other distinguishing characteristics as well, and have arisen independently at least four, and probably six, times in derived lineages. The character of highly reduced plasmodesmatal frequency in minor vein phloem, common in crop plants, has several points of origin in the tree. Thus, caution should be exercised in generalizing results on apoplastic phloem loading obtained from model species. Transfer cells have many independent points of origin, not always from lineages with reduced plasmodesmatal frequency.  相似文献   

2.
3.
A. Schulz 《Protoplasma》1986,130(1):12-26
Summary 48 hours after interrupting the root stele ofPisum, wound phloem initiated (proximally or distally to the wound) to reconnect the vascular stumps was found to contain some nucleate wound-sieve elements. At the elongating end of an incomplete wound-sieve tube these elements exhibit a sequence of ultrastructural changes as known from protophloem-sieve tubes. Elongation occurs by the addition of newly divided (wound-) sieve-element/companion-cell complexes. In order to dedifferentiate and assume a new specialization formerly quiescent stelar or cortical cells require at least one (mostly more) preliminary division. Companion cells are consequently obligatory sister cells to wound-sieve elements.By reconstruction using serial sections it could be shown that wound-sieve tubes elongate bidirectionally, starting in an early activated procambial cell of the stele. The elongation is directed by the existence of plasmodesmata, preferably when lying in primary pit fields, and by the plane of preceding divisions. Thus, the developing wound-sieve tube can deviate from the damaged bundle and radiate into the cortex as soon as the plane of the preceding divisions is favourable. In the opposite direction, elongating wound-sieve tubes run parallel to pre-existing phloem traces, thus broading their base at the bundle for the deviating part of the wound-sieve tube. Frequently an individual wound-sieve tube is supplemented at the bundle by a further wound-sieve tube which is partly running parallel to it. Both sieve tubes are interlinked with sieve plates by three-poled sieve elements.Ultrastructurally, the developmental changes of nucleate wound-sieve elements follow the known pattern. In spite of its contrasting origin and odd shape a mature wound-sieve element eventually has the same contents as regular sieve elements: sieve-element plastids, mitochondria, stacked ER and small amounts of P-protein within an electronlucent cytoplasm.  相似文献   

4.
5.
Measurements of diurnal diameter variations of the xylem and phloem are a promising tool for studying plant hydraulics and xylem-phloem interactions in field conditions. However, both the theoretical framework and the experimental verification needed to interpret phloem diameter data are incomplete. In this study, we analytically evaluate the effects of changing the radial conductance between the xylem and the phloem on phloem diameter variations and test the theory using simple manipulation experiments. Our results show that phloem diameter variations are mainly caused by changes in the radial flow rate of water between the xylem and the phloem. Reducing the hydraulic conductance between these tissues decreases the amplitude of phloem diameter variation and increases the time lag between xylem and phloem diameter variation in a predictable manner. Variation in the amplitude and timing of diameter variations that cannot be explained by changes in the hydraulic conductance, could be related to changes in the osmotic concentration in the phloem.  相似文献   

6.
Phloem protein 2 (PP2) is one of the most abundant and enigmatic proteins in the phloem sap. Although thought to be associated with structural P-protein, PP2 is translocated in the assimilate stream where its lectin activity or RNA-binding properties can exert effects over long distances. Analyzing the diversity of these proteins in vascular plants led to the identification of PP2-like genes in species from 17 angiosperm and gymnosperm genera. This wide distribution of PP2 genes in the plant kingdom indicates that they are ancient and common in vascular plants. Their presence in cereals and gymnosperms, both of which lack structural P-protein, also supports a wider role for these proteins. Within this superfamily, PP2 proteins have considerable size polymorphism. This is attributable to variability in the length of the amino terminus that extends from a highly conserved domain. The conserved PP2 domain was identified in the proteins encoded by six genes from several cucurbits, celery (Apium graveolens), and Arabidopsis that are specifically expressed in the sieve element-companion cell complex. The acquisition of additional modular domains in the amino-terminal extensions of other PP2-like proteins could reflect divergence from its phloem function.  相似文献   

7.
8.
9.
10.
11.
The phloem mobility of glucosinolates   总被引:6,自引:2,他引:4  
The transport properties of glucosinolates within Brassica napus are of interest as identification of the mechanism of transport could lead to lower levels being obtained in specific tissues such as the seeds. The phloem mobility of 35S-gluconapin (but-3-enylglucosinolate) and 35S-desulphogluconapin in oilseed rape plants has been inferred from tissue distribution patterns, as well as from observed coincident phloem mobility of 3H-gluconapin and 14C-sucrose. The measured relative phloem mobilities for sinigrin (2-propenylglucosinolate), 3H-gluconapin, 35S-desulphogluconapin, 35S-desulphosinigrin, 14C-tryptophan, 3H-AIB (-aminoisobutyric acid), and literature values for a reduced 3H-oligogalacutonide elicitor (degree of polymerization 6) and 14C-IAA (indolylacetic acid), have been compared with the predicted values obtained using the Kleier model for phloem mobility of xenobiotics. All the above compounds show phloem systemicity, demonstrated using the Ricinus assay, as predicted by the model. Log Kow (octanol-water partition coefficient) values for glucosinolates and desulphoglucosinolates measured at pH 4 and pH 7, and the effect of pH on uptake by oilseed rape embryos are provided as evidence against a weak acid trap mechanism acting in either the phloem mobility or the accumulation of glucosinolates in oilseed rape embryos. The phloem mobility of glucosinolates is explained by the intermediate permeability hypothesis. In conclusion, it would appear that glucosinolates like other groups of endogenous compounds have physicochemical properties allowing phloem mobility as predicted by the Kleier model.Keywords: Brassica napus, Ricinus communis, phloem mobility, glucosinolates, Kleier model.   相似文献   

12.
R. S. Vickery 《Planta》1978,138(1):105-106
Phloem exudates from grafts between Queensland Blue pumpkin (Cucurbita maxima Duch.) and Candy Red Hawkesbury watermelon (Citrullus vulgaris Schrad.) were analysed by iso-electric focusing to detect iso-enzymes of peroxidase. These enzymes did not move in intact phloem but, when stems were cut, they surged rapidly through graft unions.  相似文献   

13.
14.
Metabolic networks of Cucurbita maxima phloem   总被引:18,自引:0,他引:18  
Fiehn O 《Phytochemistry》2003,62(6):875-886
Metabolomic analysis aims at a comprehensive characterization of biological samples. Yet, biologically meaningful interpretations are often limited by the poor spatial and temporal resolution of the acquired data sets. One way to remedy this is to limit the complexity of the cell types being studied. Cucurbita maxima Duch. vascular exudates provide an excellent material for metabolomics in this regard. Using automated mass spectral deconvolution, over 400 components have been detected in these exudates, but only 90 of them were tentatively identified. Many amino compounds were found in vascular exudates from leaf petioles at concentrations several orders of magnitude higher than in tissue disks from the same leaves, whereas hexoses and sucrose were found in far lower amounts. In order to find the expected impact of assimilation rates on sugar levels, total phloem composition of eight leaves from four plants was followed over 4.5 days. Surprisingly, no diurnal rhythm was found for any of the phloem metabolites that was statistically valid for all eight leaves. Instead, each leaf had its own distinct vascular exudate profile similar to leaves from the same plant, but clearly different from leaves harvested from plants at the same developmental stage. Thirty to forty per cent of all metabolite levels of individual leaves were different from the average of all metabolite profiles. Using metabolic co-regulation analysis, similarities and differences between the exudate profiles were more accurately characterized through network computation, specifically with respect to nitrogen metabolism.  相似文献   

15.
Destination-selective long-distance movement of phloem proteins   总被引:2,自引:0,他引:2       下载免费PDF全文
The phloem macromolecular transport system plays a pivotal role in plant growth and development. However, little information is available regarding whether the long-distance trafficking of macromolecules is a controlled process or passive movement. Here, we demonstrate the destination-selective long-distance trafficking of phloem proteins. Direct introduction, into rice (Oryza sativa), of phloem proteins from pumpkin (Cucurbita maxima) was used to screen for the capacity of specific proteins to move long distance in rice sieve tubes. In our system, shoot-ward translocation appeared to be passively carried by bulk flow. By contrast, root-ward movement of the phloem RNA binding proteins 16-kD C. maxima phloem protein 1 (CmPP16-1) and CmPP16-2 was selectively controlled. When CmPP16 proteins were purified, the root-ward movement of CmPP16-1 became inefficient, suggesting the presence of pumpkin phloem factors that are responsible for determining protein destination. Gel-filtration chromatography and immunoprecipitation showed that CmPP16-1 formed a complex with other phloem sap proteins. These interacting proteins positively regulated the root-ward movement of CmPP16-1. The same proteins interacted with CmPP16-2 as well and did not positively regulate its root-ward movement. Our data demonstrate that, in addition to passive bulk flow transport, a destination-selective process is involved in long-distance movement control, and the selective movement is regulated by protein-protein interaction in the phloem sap.  相似文献   

16.
Interxylary phloem is here defined as strands or bands of phloem embedded within the secondary xylem of a stem or root of a plant that has a single vascular cambium. In this definition, interxylary phloem differs from intraxylary phloem, bicollateral bundles, pith bundles, and successive cambia. The inclusive but variously applied terms included phloem and internal phloem must be rejected. Histological aspects of interxylary phloem are reviewed and original data are presented. Topics covered include duration of interxylary phloem; relationship in abundance between sieve tubes in external phloem and interxylary phloem; distinctions between interxylary and intraxylary phloem; presence of parenchyma, fibers, and crystals in the interxylary phloem strands; development of cambia within interxylary phloem strands; three-dimensionalization and longevity of phloem, systematic distribution of interxylary phloem; physiological significance; and habital correlations. No single physiological phenomenon seems to explain all instances of interxylary phloem occurrence, but rapidity and volume of photosynthate transport seem implicated in most instances.  相似文献   

17.
Scaling phloem transport: information transmission   总被引:7,自引:0,他引:7  
Sieve tubes are primarily responsible for the movement of solutes over long distances, but they also conduct information about the osmotic state of the system. Using a previously developed dimensionless model of phloem transport, the mechanism behind the sieve tube's capacity to rapidly transmit pressure/concentration waves in response to local changes in either membrane solute exchange or the magnitude and axial gradient of apoplastic water potential is demonstrated. These wave fronts can move several orders of magnitude faster than the solution itself when the sieve tube's axial pressure drop is relatively small. Unlike the axial concentration drop, the axial pressure drop at steady state is independent of the apoplastic water potential gradient. As such, the regulation of whole‐sieve tube turgor could play a vital role in controlling membrane solute exchange throughout the translocation pathway, making turgor a reliable source of information for communicating change in system state.  相似文献   

18.
Summary Purified proteins from sieve tubes ofCucurbita maxima were precipitated with vinblastine and the precipitates were analyzed with the electron microscope. Filaments (35–40 Å in diameter) and tubular structures (160 Å in width) were observed in negatively stained preparations. The predominant structures of the negatively stained and of the thin sectioned material, however, were membrane-like sheets (100–120 Å in width) which showed the typical unit membrane aspect.Dedicated to Professor Dr. W.Schumacher on his 70th birthday.The investigations were supported by the Deutsche Forschungsgemeinschaft.  相似文献   

19.
  1. Download : Download high-res image (243KB)
  2. Download : Download full-size image
  相似文献   

20.
Detached leaves of Cyclamen persicum Mill. can be used as a simple source-sink system. Phloem transport in the excised material was monitored by the noninvasive 11C-technique. Assimilate movement stopped immediately when the petiole was cut off. However, within 20 min a recovery of transport was observed. The translocation rate in the detached leaf was only 13% of that in the intact plant. 14C-Xenobiotics and [3H]sucrose were injected into the upper petiole parenchyma (source). They moved downstream by a symplastic route. The stump of the petiole was inserted into a buffer solution containing ethylenediaminetetraacetic acid (sink). After 3 h, the distribution of sucrose and xenobiotics was determined in five subsequent segments of the petiole (path). The retention coefficient (r) was calculated from the ratio of radioactivity in the vascular bundle to that in the petiole parenchyma. The distribution along the vascular path was given by a geometric progression, whereas its constant was the transport coefficient (q). Values of r and q corresponded with the degree of phloem mobility and ambimobility. Four groups of compounds were classified: (i) acidic substances with log Kow = — 2 to — 2.4 (Kow is the partition coefficient octanol/water) at pH 8 (pH of sieve tube sap), retained by ion trapping and exhibiting small lateral efflux (q0.7; maleic hydrazide, dalapon); (ii) acidic substances with log Kow = — 0.7 to — 0.8 at pH 8, retained by ion trapping and subjected to a moderate lateral efflux (0.7>q> 0.5; 2,4-dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, bromoxynil); (iii) nonionised substances retained by optimum permeability, exhibiting a considerable lateral leakage (q<0.5; glyphosate, amitrole); (iv) substances without basipetal transport in the phloem (atrazine, diuron). Retention of sucrose corresponded quantitatively with that shown in group (i). This classification was also supported by results of uptake and efflux experiments using the isolated conducting tissue. Theoretical translocation profiles were calculated from the determined transport coefficients (q).Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - Kow partition coefficient octanol/water - MCPA 2-methyl-4-chloro-phenoxyacetic acid - q transport coefficient in the vascular bundle - r retention coefficient in the vascular bundle The authors gratefully acknowledge the assistance of H. Fiedler and M. Neugebauer. We are particularly grateful to K. Dutschka, G. Hudepokl, and Dr. J. Knust for producing 11CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号