首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane proteins are usually solubilized in polar solvents by incorporation into micelles. Even for small membrane proteins these mixed micelles have rather large molecular masses, typically beyond 50000 Da. The NMR technique TROSY (transverse relaxation-optimized spectroscopy) has been developed for studies of structures of this size in solution. In this paper, strategies for the use of TROSY-based NMR experiments with membrane proteins are discussed and illustrated with results obtained with the Escherichia coli integral membrane proteins OmpX and OmpA in mixed micelles with the detergent dihexanoylphosphatidylcholine (DHPC). For OmpX, complete sequence-specific NMR assignments have been obtained for the polypeptide backbone. The 13C chemical shifts and nuclear Overhauser effect data then resulted in the identification of the regular secondary structure elements of OmpX/DHPC in solution, and in the collection of an input of conformational constraints for the computation of the global fold of the protein. For OmpA, the NMR assignments are so far limited to about 80% of the polypeptide chain, indicating different dynamic properties of the reconstituted OmpA beta-barrel from those of OmpX. Overall, the present data demonstrate that relaxation-optimized NMR techniques open novel avenues for studies of structure, function and dynamics of integral membrane proteins.  相似文献   

2.
The structure of the integral membrane protein OmpX from Escherichia coli reconstituted in 60 kDa DHPC micelles (OmpX/DHPC) was calculated from 526 NOE upper limit distance constraints. The structure determination was based on complete sequence-specific assignments for the amide protons and the Val, Leu, and Ile(delta1) methyl groups in OmpX, which were selectively protonated on a perdeuterated background. The solution structure of OmpX in the DHPC micelles consists of a well-defined, eight-stranded antiparallel beta-barrel, with successive pairs of beta-strands connected by mobile loops. Several long-range NOEs observed outside of the transmembrane barrel characterize an extension of a four-stranded beta-sheet beyond the height of the barrel. This protruding beta-sheet is believed to be involved in intermolecular interactions responsible for the biological functions of OmpX. The present approach for de novo structure determination should be quite widely applicable to membrane proteins reconstituted in mixed micelles with overall molecular masses up to about 100 kDa, and may also provide a platform for additional functional studies.  相似文献   

3.
Micelles of lysomyristoylphosphatidylcholine (LMPC) and mixed micelles of LMPC with anionic detergent sodium dodecyl sulfate (SDS) have been characterized by spin-probe-partitioning electron paramagnetic resonance (SPPEPR) and time-resolved fluorescence quenching (TRFQ) experiments. SPPEPR is a novel new method to study structure and dynamics in lipid assemblies successfully applied here for the first time to micelles. Several improvements to the computer program used to analyze SPPEPR spectra have been incorporated that increase the precision in the extracted parameters considerably from which micelle properties such as effective water concentration and microviscosity may be estimated. In addition, with this increased precision, it is shown that it is feasible to study the rate of transfer of a small spin probe between micelles and the surrounding aqueous phase by SPPEPR. The rate of transfer of the spin probe di-tert-butyl nitroxide (DTBN) and the activation energy of the transfer process in LMPC and LMPC-SDS micelles have been determined with high precision. The rate of transfer increases with temperature and SDS molar fraction in mixed micelles, while it remains constant with LMPC concentration in pure LMPC micelles. The activation energy of DTBN transfer in pure lysophospholipid micelles does not change with LMPC concentration while it decreases with the increasing molar fraction of SDS in mixed LMPC-SDS micelles. Both this decrease in activation energy and the increase in the rate of transfer are rationalized in terms of an increasing micelle surface area per molecule (decreasing compactness) as SDS molecules are added. This decreasing compactness as a function of SDS content is confirmed by TRFQ measurements showing an aggregation number that decreases from 122 molecules for pure LMPC micelles to 80 molecules for pure SDS micelles. The same increase in surface area per molecule is predicted to increase the effective water concentration in the polar shell of the micelles. This increase in hydration with SDS molar fraction is confirmed by measuring the effective water concentration in the polar shell of the micelles from the hyperfine spacing of DTBN. This work demonstrates the potential to design mixed lysophospholipid surfactant micelles with variable physicochemical properties. Well-defined micellar substrates, in terms of their physicochemical properties, may improve the studies of protein structure and enzyme kinetics.  相似文献   

4.
As an alternative to X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy in solution can be used for three-dimensional structure determination of small membrane proteins, preferably proteins with beta-barrel fold. This paper reviews recent achievements as well as limiting factors encountered in solution NMR studies of membrane proteins. Our particular interest has been focused on supplementing structure determination with data on the solvation of the proteins in the mixed micelles with detergents that are used to reconstitute membrane proteins for the NMR experiments. For the Escherichia coli outer membrane protein X (OmpX) in dihexanoylphosphatidylcholine (DHPC) micelles, such studies showed that the central part of the protein is covered with a fluid monolayer of lipid molecules, which seems to mimic quite faithfully the embedding of the protein in the lipid phase of the biological membrane. The implication is that the micellar systems used in this instance for the NMR studies of the membrane protein should also be suitable for further investigations of functional interactions with other proteins or low-molecular weight ligands.  相似文献   

5.
Psachoulia E  Bond PJ  Sansom MS 《Biochemistry》2006,45(30):9053-9058
Mistic is an unusual membrane protein from Bacillus subtilis. It appears to fold and insert autonomously into a lipid bilayer and has been suggested as a tool that aids the targeting of eukaryotic membrane proteins to bacterial membranes. The NMR structure of Mistic in detergent (LDAO) micelles has revealed it to be a four alpha-helix bundle. From a structural perspective, Mistic does not resemble other membrane proteins. Its external surface is not very hydrophobic, and standard methods do not predict any of its helices to be in the transmembrane orientation. Molecular dynamics simulations (simulation times approximately 30 ns) in water and in detergent micelles have been used to explore the conformational stability of Mistic as a function of its environment. In water, the protein is stable, exhibiting no significant change in fold on a 30 ns time scale. In contrast, in three simulations in detergent micelles, the partial unfolding of Mistic occurred, whereby the H4 helix drifted away from the H1-H3 core. This was due to the penetration of detergent molecules between H4 and the remainder of the protein. This is unlike the behavior of several other membrane proteins, both alpha-helix bundles and beta-barrels, in comparable detergent micelle simulations. The unfolding of H4 from the H1-H3 core of Mistic could be partially reversed by a simulation in which the detergent molecules were removed, and the unfolded protein was simulated in water. These results suggest that Mistic may not be a stable integrated membrane protein but rather that it may undergo a conformational change upon interaction with a membrane or membrane-like environment.  相似文献   

6.
Despite the major interest in membrane proteins at functional, genomic, and therapeutic levels, their biochemical and structural study remains challenging, as they require, among other things, solubilization in detergent micelles. The complexity of this task derives from the dependence of membrane protein structure on their anisotropic environment, influenced by a delicate balance between many different physicochemical properties. To study such properties in a small protein–detergent complex, we used fluorescence measurements and molecular dynamics (MD) simulations on the transmembrane part of glycophorin A (GpAtm) solubilized in micelles of dihexanoylphosphatidylcholine (DHPC) detergent. Fluorescence measurements show that DHPC has limited ability to solubilize the peptide, while MD provides a possible molecular explanation for this. We observe that the detergent molecules are balanced between two different types of interactions: cohesive interactions between detergent molecules that hold the micelle together, and adhesive interactions with the peptide. While the cohesive interactions are detergent mediated, the adhesion to the peptide depends on the specific interactions between the hydrophobic parts of the detergent and the topography of the peptide dictated by the amino acids. The balance between these two parameters results in a certain frustration of the system and rather slow equilibration. These observations suggest how molecular properties of detergents could influence membrane protein stabilization and solubilization.  相似文献   

7.
The bacterial outer membrane protein OmpX from Escherichia coli has been investigated by molecular dynamics simulations when embedded in a phospholipid bilayer and as a protein-micelle aggregate. The resulting simulation trajectories were analysed in terms of structural and dynamic properties of the membrane protein. In agreement with experimental observations, highest relative stability was found for the β-barrel region that is embedded in the lipophilic phase, whereas an extracellular protruding β-sheet, which is a unique structural feature of OmpX that supposedly plays an important role in cell adhesion and invasion, shows larger structure fluctuations. Additionally, we investigated water permeation into the core of the β-barrel protein, which contains a tight salt-bridge and hydrogen-bond network, so that extensive water flux is unlikely. Differences between the bilayer and the micellar system were observed in the length of the barrel and its position inside the lipid environment, and in the protein interactions with the hydrophilic part of the lipids near the lipid/water interface. Those variations suggest that micelles and other detergent environments might not offer a wholly membrane-like milieu to promote adoption of the physiological conformational state by OmpX.  相似文献   

8.
BACKGROUND: The integral outer membrane protein X (OmpX) from Escherichia coli belongs to a family of highly conserved bacterial proteins that promote bacterial adhesion to and entry into mammalian cells. Moreover, these proteins have a role in the resistance against attack by the human complement system. Here we present the first crystal structure of a member of this family. RESULTS: The crystal structure of OmpX from E. coli was determined at 1.9 A resolution using multiple isomorphous replacement. OmpX consists of an eight-stranded antiparallel all-next-neighbor beta barrel. The structure shows two girdles of aromatic amino acid residues and a ribbon of nonpolar residues that attach to the membrane interior. The core of the barrel consists of an extended hydrogen-bonding network of highly conserved residues. OmpX thus resembles an inverse micelle. The structure explains the dramatically improved crystal quality of OmpX containing the mutation His100-->Asn, which made the X-ray analysis possible. The coordination spheres of two bound platinum ions are described. CONCLUSIONS: The OmpX structure shows that within a family of virulence-related membrane proteins, the membrane-spanning part of the protein is much better conserved than the extracellular loops. Moreover, these loops form a protruding beta sheet, the edge of which presumably binds to external proteins. It is suggested that this type of binding promotes cell adhesion and invasion and helps defend against the complement system. Although OmpX has the same beta-sheet topology as the structurally related outer membrane protein A (OmpA), their barrels differ with respect to the shear numbers and internal hydrogen-bonding networks.  相似文献   

9.
Outer membrane protein A (OmpA) of Escherichia coli is a beta-barrel membrane protein that unfolds in 8 M urea to a random coil. OmpA refolds upon urea dilution in the presence of certain detergents or lipids. To examine the minimal requirements for secondary and tertiary structure formation in beta-barrel membrane proteins, folding of OmpA was studied as a function of the hydrophobic chain length, the chemical structure of the polar headgroup, and the concentration of a large array of amphiphiles. OmpA folded in the presence of detergents only above a critical minimal chain length of the apolar chain as determined by circular dichroism spectroscopy and a SDS-PAGE assay that measures tertiary structure formation. Details of the chemical structure of the polar headgroup were unimportant for folding. The minimal chain length required for folding correlated with the critical micelle concentration in each detergent series. Therefore, OmpA requires preformed detergent micelles for folding and does not adsorb monomeric detergent to its perimeter after folding. Formation of secondary and tertiary structure is thermodynamically coupled and strictly dependent on the interaction with aggregated amphiphiles.  相似文献   

10.
The number of phosphatidylserine molecules involved in activating protein kinase C was determined in a mixed micelle system where one monomer of protein kinase C binds to one detergent:lipid micelle of fixed composition. Unusually high cooperativity, specificity, and multiplicity in the protein kinase C-phospholipid interaction are demonstrated by examining the lipid dependence of enzymatic activity. The rates of autophosphorylation and substrate (histone) phosphorylation are specifically regulated by the phosphatidylserine content of the micelles. Hill coefficients of 8-11 were calculated for phosphatidylserine-dependent stimulation of enzyme activity, with a maximum occurring in micelles containing greater than or equal to 12 phosphatidylserine molecules. The high specificity that exists is illustrated by the fact that phosphatidylethanolamine and phosphatidylglycerol, but not phosphatidylcholine or phosphatidic acid, can replace only some of the phosphatidylserine molecules. We propose that Ca2+ and acidic phospholipids cause the protein to undergo a conformation change revealing multiple phosphatidylserine binding sites and resulting in the highly cooperative and specific interaction of protein kinase C with phosphatidylserine. Consistent with this, the proteolytic sensitivity of protein kinase C increases approximately 10-fold in the presence of phosphatidylserine and Ca2+ compared to Ca2+ alone. The high degree of cooperativity and specificity may provide a sensitive method for the physiological regulation of protein kinase C by phospholipid.  相似文献   

11.
Properties of mixed dispersions of sphingomyelin and the nonionic detergent, Triton X-305, were investigated by analytical ultracentrifugation and by autocorrelation spectroscopy of scattered laser light. These properties were compared with those of the sphingomyelin/Triton X-100 mixed micellar system reported previously [S. Yedgar, Y. Barenholz, and V. G. Cooper (1974) Biochim. Biophys. Acta 363, 98-111]. The substitution of the 30-unit ethylene oxide chain of Triton X-305 for the 10-unit chain of the Triton X-100 resulted in the appearance of two micellar phases at all detergent/lipid mixture ratios studied, whereas only a single mixed micellar phase was observed using Triton X-100. Despite this difference, the properties of the mixed lipid/detergent micelles obtained using Triton X-100 have been verified in the following respects: The detergent aggregation numbers in the mixed micelles are quite constant over a wide range of detergent molar fractions, being about 70 and 400 for the lighter and heavier mixed micellar phases, respectively. The detergent aggregation numbers are larger in the mixed micelle than in the pure detergent micelle. Very large sphingomyelin aggregation numbers can be accommodated within the mixed micelles, apparently by the critical intervention of the detergent molecules to produce a stable micellar structure.  相似文献   

12.
The spin labels, 5-doxylstearate, 12-doxylstearate, 16-doxylstearate and 1-oxyl-2,2,6,6-tetramethyl-4-dodecylphosphopiperidine, have been incorporated into dodecylphosphocholine micelles and mixed dodecylphosphocholine glucagon micelles. The EPR spectral parameters for the different spin labels and the 1H- and 13C-NMR relaxation rates for nuclei of the detergent molecules indicated that inclusion of up to one spin label molecule per micelle had little influence on the spatial organization of the micelles. Furthermore, the location and environment of the spin labels in the dodecylphosphocholine micelles were not noticeably affected by the addition of glucagon and the 1H-NMR spectra observed for glucagon in mixed spin label/deuterated dodecylphosphocholine/glucagon micelles showed that the different spin labels had essentially no effect on the conformation of glucagon. Approximate spatial locations within the micelle for the nitroxide moieties of the different spin labels were determined from the NMR relaxation rates observed for different nuclei of dodecylphosphocholine. On this basis, the line broadening of individually assigned glucagon 1H-NMR lines by the different spin labels was used to determine the approximate orientation of the polypeptide chain with respect to the micelle surface. Overall, the data indicate that the glucagon backbone runs roughly parallel to the micelle surface, with the depth of immersion adjusted so that polar and apolar side chains can be oriented towards the surface or interior of the micelle, respectively.  相似文献   

13.
Over 50 detergents were tested to establish which would be most effective in releasing proteins from membrane-bounded compartments without denaturating them. Various concentrations of each detergent were tested for two activities: (1) solubilization of egg phospholipid liposomes as measured by reduction of turbidity and (2) effect of detergent concentration on the activities of soluble, hydrolytic enzymes. Those detergents must effective in solubilizing 0.2% lipid and least detrimental to enzymes were five pure, synthetic compounds recently introduced: CHAPS, CHAPSO, Zwittergents 310 and 312, and octylglucoside. Industrial detergents were generally much inferior, insofar as they solubilized membranes inefficiently and/or inactivated certain hydrolytic enzymes readily. The five detergents were characterized by (a) an unusually high critical micelle concentration and (b) a preference for forming mixed micelles with lipids instead of forming pure micelles, as indicated by an ability to solubilize lipid at concentrations of detergent significantly below the critical micelle concentration. This characteristic permits solubilization of high concentrations of membrane below the critical micelle concentration of the detergent so that protein denaturation is minimized. A generally applicable guideline that emerged from this study is that detergents should be used at approximately their critical micelle concentration which should not be exceeded by the concentration of membrane. Similar considerations should apply to the use of detergents in purifying and reconstituting intrinsic membrane proteins.  相似文献   

14.
The spin labels, 5-doxylstearate, 12-doxylstearate, 16-doxylstearate and 1-oxyl-2,2,6,6-tetramethyl-4-dodecylphospiperidine, have been incorporated into dodecylphospocholine micelles and mixed dodecylphosphocholine/ glucagon micelles. The EPR spectral parameters for the different spin labels and the 1H- and 13C-NMR relaxation rates for nuclei of the detergent molecules indicated that inclusion of up to one spin label molecule per micelle had little influence on the spatial organization of the micelles. Furthermore, the location and environment of the spin labels in the dodecylphosphocholine micelles were not noticeably affected by the addition of glucagon and the 1H-NMR spectra observed for glucagon in mixed spin label/deuterated dodecylphosphocholine/glucagon micelles showed that the different spin labels had essentially no effect on the conformation of glucagon. Approximate spatial locations within the micelle for the nitroxide moieties of the different spin labels were determined from the NMR relaxation rates observed for different nuclei of dodecylphosphocholine. On this basis, the line broadening of individually assigned glucagon 1H-NMR lines by the different spin labels was used to determine the approximate orientation of the polypeptide chain with respect to the micelle surface. Overall, the data indicate that the glucagon backbone runs roughly parallel to the micelle surface, with the depth of immersion adjusted so that polar and apolar side chains can be oriented towards the surface or interior of the micelle, respectively.  相似文献   

15.
Spontaneous membrane insertion and folding of beta-barrel membrane proteins from an unfolded state into lipid bilayers has been shown previously only for few outer membrane proteins of Gram-negative bacteria. Here we investigated membrane insertion and folding of a human membrane protein, the isoform 1 of the voltage-dependent anion-selective channel (hVDAC1) of mitochondrial outer membranes. Two classes of transmembrane proteins with either alpha-helical or beta-barrel membrane domains are known from the solved high-resolution structures. VDAC forms a transmembrane beta-barrel with an additional N-terminal alpha-helix. We demonstrate that similar to bacterial OmpA, urea-unfolded hVDAC1 spontaneously inserts and folds into lipid bilayers upon denaturant dilution in the absence of folding assistants or energy sources like ATP. Recordings of the voltage-dependence of the single channel conductance confirmed folding of hVDAC1 to its active form. hVDAC1 developed first beta-sheet secondary structure in aqueous solution, while the alpha-helical structure was formed in the presence of lipid or detergent. In stark contrast to bacterial beta-barrel membrane proteins, hVDAC1 formed different structures in detergent micelles and phospholipid bilayers, with higher content of beta-sheet and lower content of alpha-helix when inserted and folded into lipid bilayers. Experiments with mixtures of lipid and detergent indicated that the content of beta-sheet secondary structure in hVDAC1 decreased at increased detergent content. Unlike bacterial beta-barrel membrane proteins, hVDAC1 was not stable even in mild detergents such as LDAO or dodecylmaltoside. Spontaneous folding of outer membrane proteins into lipid bilayers indicates that in cells, the main purpose of membrane-inserted or associated assembly factors may be to select and target beta-barrel membrane proteins towards the outer membrane instead of actively assembling them under consumption of energy as described for the translocons of cytoplasmic membranes.  相似文献   

16.
Unfolding of beta-sheet proteins in SDS   总被引:1,自引:0,他引:1       下载免费PDF全文
Beta-sheet proteins are particularly resistant to denaturation by sodium dodecyl sulfate (SDS). Here we compare unfolding of two beta-sandwich proteins TNfn3 and TII27 in SDS. The two proteins show different surface electrostatic potential. Correspondingly, TII27 unfolds below the critical micelle concentration via the formation of hemimicelles on the protein surface, whereas TNfn3 only unfolds around the critical micelle concentration. Isothermal titration calorimetry confirms that unfolding of TII27 sets in at lower SDS concentrations, although the total number of bound SDS molecules is similar at the end of unfolding. In mixed micelles with the nonionic detergent dodecyl maltoside, where the concentration of monomeric SDS is insignificant, the behavior of the two proteins converges. TII27 unfolds more slowly than TNfn3 in SDS and follows a two-mode behavior. Additionally TNfn3 shows inhibition of SDS unfolding at intermediate SDS concentrations. Mutagenic analysis suggests that the overall unfolding mechanism is similar to that observed in denaturant for both proteins. Our data confirm the kinetic robustness of beta-sheet proteins toward SDS. We suggest this is related to the inability of SDS to induce significant amounts of alpha-helix structure in these proteins as part of the denaturation process, forcing the protein to denature by global rather than local unfolding.  相似文献   

17.
Composition of octyl glucoside-phosphatidylcholine mixed micelles   总被引:3,自引:0,他引:3  
The composition of mixed micelles of egg phosphatidylcholine (PC) and octyl glucoside was studied by a novel technique based on measuring resonance energy-transfer efficiency between two fluorescent lipid probes present in trace amounts. Equations were derived for calculating the stoichiometry of the composition of mixed micelles from the energy-transfer measurements. These were applied to determining the average number of lipid molecules in the octyl glucoside-egg PC mixed micelle as a function of detergent concentration. The average number of detergent molecules in these mixed micelles was independent of lipid concentration in the range studied (0-500 microM). The dependence of mixed micelle stoichiometry on the concentration of aqueous (monomeric) octyl glucoside is consistent with the assumptions of ideal mixing of the two amphiphiles in the mixed micelles and that mixed micelles can be treated as a distinct phase.  相似文献   

18.
Binding of dodecyloctaethyleneglycol monoether (C12E3) and purified Triton X-100 to various integral membrane proteins was studied by chromatographic procedures. Binding capacity decreased in the following order: bovine rhodopsin greater than photochemical reaction center greater than sarcoplasmic reticulum Ca2+-ATPase. The detergents were bound in different amounts to the proteins and less than corresponding to the aggregation number of the pure micelles. Appreciable binding of C12E8 to Ca2+-ATPase was observed far below the critical micelle concentration, consistent with interaction of the membrane protein with non-micellar detergent. Model calculations indicate that the detergents cannot combine with the membrane proteins, forming an oblate ring similar to that of pure detergent micelles, such as has been previously proposed for e.g. cytochrome b5 [Robinson and Tanford (1975) Biochemistry, 14, 365-378]. Other arrangements (prolate and monolayer rings), in which all detergent molecules are in contact with the protein, are considered as alternatives for covering the hydrophobic surface of the membrane protein with a continuous layer of detergent.  相似文献   

19.
Quantitative studies of membrane protein folding and unfolding can be difficult because of difficulties with efficient refolding as well as a pronounced propensity to aggregate. However, mixed micelles, consisting of the anionic detergent sodium dodecyl sulfate and the nonionic detergent dodecyl maltoside facilitate reversible and quantitative unfolding and refolding. The 4-transmembrane helix protein DsbB from the inner membrane of Escherichia coli unfolds in mixed micelles according to a three-state mechanism involving an unfolding intermediate I. The temperature dependence of the kinetics of this reaction between 15 degrees and 45 degrees C supports that unfolding from I to the denatured state D is accompanied by a significant decrease in heat capacity. For water-soluble proteins, the heat capacity increases upon unfolding, and this is generally interpreted as the increased binding of water to the protein as it unfolds, exposing more surface area. The decrease in DsbB's heat capacity upon unfolding is confirmed by independent thermal scans. The decrease in heat capacity is not an artifact of the use of mixed micelles, since the water soluble protein S6 shows conventional heat-capacity changes in detergent. We speculate that it reflects the binding of SDS to parts of DsbB that are solvent-exposed in the native DM-bound state. This implies that the periplasmic loops of DsbB are relatively unstructured. This anomalous thermodynamic behavior has not been observed for beta-barrel membrane proteins, probably because they do not bind SDS so extensively. Thus the thermodynamic behavior of membrane proteins appears to be intimately connected to their detergent-binding properties.  相似文献   

20.
Characterization of the solubilization of lipid bilayers by surfactants   总被引:11,自引:0,他引:11  
This communication addresses the state of aggregation of lipid-detergent mixed dispersions. Analysis of recently published data suggest that for any given detergent-lipid mixture the most important factor in determining the type of aggregates (mixed vesicles or mixed micelles) and the size of the aggregate is the detergent to lipid molar ratio in these aggregates, herein denoted the effective ratio, Re. For mixed bilayers this effective ratio has been previously shown to be a function of the lipid and detergent concentrations and of an equilibrium partition coefficient, K, which describes the distribution of the detergent between the bilayers and the aqueous phase. We show that, similar to mixed bilayers, the size of mixed micelles is also a function of the effective ratio, but for these dispersions the distribution of detergent between the mixed micelles and the aqueous medium obeys a much higher partition coefficient. In practical terms, the detergent concentration in the mixed micelles is equal to the difference between the total detergent concentration and the critical micelle concentration (cmc). Thus, the effective ratio is equal to this difference divided by the lipid concentration. Transformation of mixed bilayers to mixed micelles, commonly denoted solubilization, occurs when the surfactant to lipid effective ratio reaches a critical value. Experimental evaluation of this critical ratio can be based on the linear dependence of detergent concentration, required for solubilization, on the lipid concentration. According to the 'equilibrium partition model', the dependence of the 'solubilizing detergent concentration' on the lipid concentration intersects with the lipid axis at -1/K, while the slope of this dependence is the critical effective ratio. On the other hand, assuming that when solubilization occurs the detergent concentration in the aqueous phase is approximately equal to the critical micelle concentration, implies that the above dependence intersects with the detergent axis at the critical micelle concentration, while its slope, again, is equal to the critical effective ratio. Analysis of existing data suggests that within experimental error both these distinctively different approaches are valid, indicating that the critical effective ratio at which solubilization occurs is approximately equal to the product of the critical micelle concentration and the distribution coefficient K. Since the nature of detergent affects K and the critical micelle concentration in opposite directions, the critical ('solubilizing') effective ratio depends upon the nature of detergent less than any of these two factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号