首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear matrices were isolated from plasmodia of a true slime mold, Physarum polycephalum, and the DNA synthetic activity in vitro was examined. These matrices isolated in S-phase catalyzed DNA synthesis requiring Mg2+, deoxyribonucleoside 5'-triphosphates and ATP, without exogenous templates. The activity changed during S-phase with the rate of in vivo DNA replication. Product analysis by gel electrophoresis revealed that the matrices produced Okazaki fragments. These results suggest that DNA synthesis partially reflects in vivo DNA replication. DNA synthesis was sensitive to aphidicolin, heparin and N-ethylmaleimide, indicating involvement of the alpha-like DNA polymerase of Physarum. Exogenous addition of activated DNA stimulated DNA synthesis 4-10-fold and suggested that only some of the existing enzymes are involved in endogenous DNA synthesis. Matrices isolated in G2-phase were also associated with a similar DNA synthetic activity, but they did not produce Okazaki fragments in vitro. It is, therefore, concluded that nuclear matrices are associated with alpha-like DNA polymerase throughout the cell cycle, and that some of the enzymes participate in in vivo DNA replication in S-phase; thus, DNA replication is possibly controlled by this process. The relationship between DNA synthetic activities by the isolated nuclei and matrices was also discussed.  相似文献   

2.
An aphidicolin-sensitive DNA polymerase was purified from extracts of Halobacterium halobium. The analysis of this alpha-like DNA polymerase on polyacrylamide gels under denaturing conditions revealed two peptides with molecular masses of 70 kDa and 60 kDa in equal amounts. Like the DNA polymerase alpha isolated from eukaryotes, the alpha-like DNA polymerase possesses primase activity using UTP and polydeoxyadenylate as template. The primase activity was sensitive to aphidicolin and inhibited by an antiserum against the alpha-like DNA polymerase of H. halobium. The primase activity was dependent on the presence of high salt concentrations.  相似文献   

3.
Most DNA polymerases are multifunctional proteins that possess both polymerizing and exonucleolytic activities. For Escherichia coli DNA polymerase I and its relatives, polymerase and exonuclease activities reside on distinct, separable domains of the same polypeptide. The catalytic subunits of the alpha-like DNA polymerase family share regions of sequence homology with the 3'-5' exonuclease active site of DNA polymerase I; in certain alpha-like DNA polymerases, these regions of homology have been shown to be important for exonuclease activity. This finding has led to the hypothesis that alpha-like DNA polymerases also contain a distinct 3'-5' exonuclease domain. We have introduced conservative substitutions into a 3'-5' exonuclease active site homology in the gene encoding herpes simplex virus DNA polymerase, an alpha-like polymerase. Two mutants were severely impaired for viral DNA replication and polymerase activity. The mutants were not detectably affected in the ability of the polymerase to interact with its accessory protein, UL42, or to colocalize in infected cell nuclei with the major viral DNA-binding protein, ICP8, suggesting that the mutation did not exert global effects on protein folding. The results raise the possibility that there is a fundamental difference between alpha-like DNA polymerases and E. coli DNA polymerase I, with less distinction between 3'-5' exonuclease and polymerase functions in alpha-like DNA polymerases.  相似文献   

4.
Baculovirus induction of a DNA polymerase.   总被引:10,自引:4,他引:6       下载免费PDF全文
The baculovirus, Autographa california nuclear polyhedrosis virus, induced a new aphidicolin-sensitive, alpha-like, DNA polymerase upon infection of the lepidopteran noctuid, Trichoplusia ni. The new virus-induced DNA polymerase could be separated from the host alpha-like polymerase by phosphocellulose chromatography. The two polymerases differed in their sensitivities to heat inactivation, high salt concentrations, and 0.1 M phosphate buffer.  相似文献   

5.
A Bernad  A Zaballos  M Salas    L Blanco 《The EMBO journal》1987,6(13):4219-4225
The Bacillus subtilis phage luminal diameter 29 DNA polymerase, involved in protein-primed viral DNA replication, was inhibited by phosphonoacetic acid (PAA), a known inhibitor of alpha-like DNA polymerases, by decreasing the rate of elongation. Three highly conserved regions of amino acid homology, found in several viral alpha-like DNA polymerases and in the luminal diameter 29 DNA polymerase, one of them proposed to be the PAA binding site, were also found in the T4 DNA polymerase. This prokaryotic enzyme was highly sensitive to the drugs aphidicolin and the nucleotide analogues butylanilino dATP (BuAdATP) and butylphenyl dGTP (BuPdGTP), known to be specific inhibitors of eukaryotic alpha-like DNA polymerases. Two potential DNA polymerases from the linear plasmid pGKL1 from yeast and the S1 mitochondrial DNA from maize have been identified, based on the fact that they contain the three conserved regions of amino acid homology. Comparison of DNA polymerases from prokaryotic and eukaryotic origin showed extensive amino acid homology in addition to highly conserved domains. These findings reflect evolutionary relationships between hypothetically unrelated DNA polymerases.  相似文献   

6.
7.
alpha-like and beta-like DNA polymerases have previously been isolated from a halophilic archaebacterium Halobacterium halobium. In this report, we show that the alpha-like DNA polymerase has an associated 3' to 5'-exonuclease activity which is specific for single-stranded DNA, sensitive to both aphidicolin and N-ethylmaleimide and dependent on high salt concentrations like the polymerase activity. As this DNA polymerase has been shown to contain a primase activity, it may be considered as the equivalent to both eukaryotic DNA polymerases alpha and delta. As shown by glycerol-gradient centrifugation and electrophoresis under denaturing conditions, the beta-like polymerase would appear to have a monomeric structure and comprise of a single 65-kDa polypeptide. This DNA polymerase has both 3' to 5'-exonuclease and 5' to 3'-exonuclease activities which, contrary to polymerase activity, are inhibited by high salt concentrations.  相似文献   

8.
The phi 29 DNA polymerase, an alpha-like DNA polymerase, shows an inorganic pyrophosphate-dependent degradative activity with similar requirements to the corresponding one of Escherichia coli DNA polymerase I: (a) it requires a high concentration of inorganic pyrophosphate and is reversed by polymerization; (b) like DNA polymerization, it needs a duplex DNA with protruding 5' single-strand; (c) it acts in the 3' to 5' direction releasing free dNTPs, thus, it can be considered as the reversal of polymerization; (d) although a correctly base-paired 3' primer terminus is the preferred substrate, the pyrophosphorolytic activity is able to remove mismatched 3' ends. In agreement with the structural and functional model previously proposed for the phi 29 DNA polymerase, the analysis of point mutations has revealed that the pyrophosphorolytic activity, like the polymerization activity, is located at the C-terminal portion of the molecule, involving the amino acid motif YCDTD, highly conserved in alpha-like DNA polymerases. Furthermore, the analysis of phi 29 DNA polymerase mutants indicates that pyrophosphorolysis, like DNA polymerization, also requires an efficient translocation of the enzyme along the template.  相似文献   

9.
Effect of polyamines on the activity of malarial alpha-like DNA polymerase   总被引:1,自引:0,他引:1  
DNA polymerase from the malarial parasite Plasmodium falciparum required Mg2+ for activity, Putrescine (1 mM) caused a twofold increase in enzyme activity in the presence of a suboptimal concentration of MgCl2 (2 mM). Spermidine (1.5-2.0 mM) or spermine (0.1-0.3 mM) increased the activity of malarial DNA polymerase, in the presence of 2 mM MgCl2, by factors of 6 and 3-5, respectively. The activity of DNA polymerase from calf thymus or from NIH 3T3 cells transformed by the ras oncogene were not stimulated by these polyamines to the same extent. These findings suggest that in malaria-infected erythrocytes, polyamines, at physiological concentrations, serve as a cofactor for the parasitic alpha-like DNA polymerase. Malarial parasites grown in cultured human erythrocytes did not synthesize DNA after treatment with alpha-difluoromethylornithine, which caused polyamine depletion in the infected cells. DNA synthesis was resumed after adding putrescine to the polyamine-depleted cultures. DNA synthesis was also initiated when actinomycin D was added along with putrescine to polyamine-depleted cells. It thus appears that polyamines are essential for the translation of the DNA polymerase mRNA and that polyamines play an important role in regulating the cell cycle of the malarial parasite.  相似文献   

10.
The contribution of human DNA polymerase epsilon to nuclear DNA replication was studied. Antibody K18 that specifically inhibits DNA polymerase activity of human DNA polymerase epsilon in vitro significantly inhibits DNA synthesis both when microinjected into nuclei of exponentially growing human fibroblasts and in isolated HeLa cell nuclei. The capability of this neutralizing antibody to inhibit DNA synthesis in cells is comparable to that of monoclonal antibody SJK-132-20 against DNA polymerase alpha. Contrary to the antibody against DNA polymerase alpha, antibody K18 against DNA polymerase epsilon did not inhibit SV40 DNA replication in vitro. These results indicate that DNA polymerase epsilon plays a role in replicative DNA synthesis in proliferating human cells like DNA polymerase alpha, and that this role for DNA polymerase epsilon cannot be modeled by SV40 DNA replication.  相似文献   

11.
An alpha-like DNA polymerase from Halobacterium halobium   总被引:2,自引:0,他引:2  
Two DNA polymerases have been isolated from extracts of Halobacterium halobium, one having a sedimentation coefficient of 11 S, designated as alpha-like polymerase and possessing the following characteristics. It is sensitive to both aphidicolin and N-ethylmaleimide but indifferent to the presence of a dideoxynucleoside triphosphate. Therefore this polymerase is very similar to the alpha DNA polymerase of eukaryotes. The enzyme requires 5 M NaCl for maximum activity. The other polymerase has a sedimentation coefficient of 4.4 S and is resistant to both aphidicolin and N-ethylmaleimide. However, it is inhibited by a dideoxynucleoside triphosphate.  相似文献   

12.
Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase   总被引:80,自引:0,他引:80  
K R Tindall  T A Kunkel 《Biochemistry》1988,27(16):6008-6013
We have determined the fidelity of in vitro DNA synthesis catalyzed at high temperature by the DNA polymerase from the thermophilic bacterium Thermus aquaticus. Using a DNA substrate that contains a 3'-OH terminal mismatch, we demonstrate that the purified polymerase lacks detectable exonucleolytic proofreading activity. The fidelity of the Taq polymerase was measured by two assays which score errors produced during in vitro DNA synthesis of the lacZ alpha complementation gene in M13mp2 DNA. In both assays, the Taq polymerase produces single-base substitution errors at a rate of 1 for each 9000 nucleotides polymerized. Frameshift errors are also produced, at a frequency of 1/41,000. These results are discussed in relation to the effects of high temperature on fidelity and the use of the Taq DNA polymerase as a reagent for the in vitro amplification of DNA by the polymerase chain reaction.  相似文献   

13.
We have purified the DNA polymerase II of Escherichia coli from the recombinant strain carrying the plasmid which encodes the polB gene. We confirmed that the purified protein, of molecular weight 90,000, possesses a 3'----5' exonuclease activity in addition to DNA polymerizing activity in a single polypeptide. Its DNA polymerizing activity was sensitive to the drug aphidicoline, which is a specific and direct inhibitor of the alpha-like DNA polymerases including eukaryotic replicative DNA polymerases. Aphidicolin had no detectable effect on the 3'----5' exonuclease activity. The inhibition by aphidicolin on the polymerizing activity of polymerase II was competitive with respect to dNTP and uncompetitive with respect to template DNA. This mode of action is the same as that on eukaryotic DNA polymerase alpha. The apparent Ki value calculated from Lineweaver-Burk plots was 55.6 microM.  相似文献   

14.
Proliferating cell nuclear antigen (PCNA) is an essential component of the DNA replication and repair machinery in the domain Eucarya. We cloned the gene encoding a PCNA homolog (PfuPCNA) from an euryarchaeote, Pyrococcus furiosus, expressed it in Escherichia coli, and characterized the biochemical properties of the gene product. The protein PfuPCNA stimulated the in vitro primer extension abilities of polymerase (Pol) I and Pol II, which are the two DNA polymerases identified in this organism to date. An immunological experiment showed that PfuPCNA interacts with both Pol I and Pol II. Pol I is a single polypeptide with a sequence similar to that of family B (alpha-like) DNA polymerases, while Pol II is a heterodimer. PfuPCNA interacted with DP2, the catalytic subunit of the heterodimeric complex. These results strongly support the idea that the PCNA homolog works as a sliding clamp of DNA polymerases in P. furiosus, and the basic mechanism for the processive DNA synthesis is conserved in the domains Bacteria, Eucarya, and Archaea. The stimulatory effect of PfuPCNA on the DNA synthesis was observed by using a circular DNA template without the clamp loader (replication factor C [RFC]) in both Pol I and Pol II reactions in contrast to the case of eukaryotic organisms, which are known to require the RFC to open the ring structure of PCNA prior to loading onto a circular DNA. Because RFC homologs have been found in the archaeal genomes, they may permit more efficient stimulation of DNA synthesis by archaeal DNA polymerases in the presence of PCNA. This is the first stage in elucidating the archaeal DNA replication mechanism.  相似文献   

15.
Single-stranded M13mp18 phage DNA was methylated with dimethylsulfate (DMS), and further treated with alkali to ring-open N7-methylguanine residues and yield 2-6-diamino-4-hydroxy-5N-methylformamidopyrimidine (Fapy) residues. Nucleotide incorporation during in vitro DNA synthesis on methylated template using E. coli DNA polymerase Klenow fragment (Kf polymerase) was reduced compared to the unmethylated template. Additional treatment of the methylated template with NaOH to generate Fapy residues, further reduced in vitro DNA synthesis compared to the synthesis on methylated templates, which suggested that Fapy residues were a block to in vitro DNA synthesis. Analysis of the termination products on sequencing gels, assuming that synthesis stops one base before a blocking lesion, indicated that arrest of DNA synthesis upon direct alkylation of single-stranded DNA occurred 1 base 3' to template adenine residues in the case of Kf polymerase and 1 base 3' to adenine and cystosine residues for T4 polymerase. When the alkylated templates were treated with NaOH to produce a template which converted all the N7-methylguanine residues to Fapy residues, the blocks to DNA synthesis were still observed one base before adenine residues. In addition to the stops previously observed for the methylated templates, however, new stops occurred one base 3' to template guanine residues for synthesis using both Kf polymerase and T4 polymerase. Fapy residues, therefore, represent a potential lethal lesion which may also arrest in vivo DNA synthesis if not repaired.  相似文献   

16.
We have purified from Xenopus laevis ovaries a major DNA polymerase alpha species that lacked DNA primase activity. This primase-devoid DNA polymerase alpha species exhibited the same sensitivity as the DNA polymerase DNA primase alpha to BuAdATP and BuPdGTP, nucleotide analogs capable of distinguishing between DNA polymerase delta and DNA polymerase DNA primase alpha. The primase-devoid DNA polymerase alpha species also lacked significant nuclease activity indicative of the alpha-like (rather than delta-like) nature of the DNA polymerase. Using a poly(dT) template, the primase-devoid DNA polymerase alpha species elongated an oligo(rA10) primer up to 51-fold more effectively than an oligo(dA10) primer. In direct contrast, the DNA polymerase DNA primase alpha complex showed only a 4.6-fold preference for oligoribonucleotide primers at the same template/primer ratio. The catalytic differences between the two DNA polymerase alpha species were most dramatic at a template/primer ratio of 300. The primase-devoid DNA polymerase alpha species was found at high levels throughout oocyte and embryonic development. This suggests that the primase-devoid DNA polymerase alpha species could play a physiological role during DNA chain elongation in vivo, even if it is chemically related to DNA polymerase DNA primase alpha.  相似文献   

17.
We have developed an in vitro DNA polymerase forward mutation assay using damaged DNA templates that contain the herpes simplex virus type 1 thymidine kinase (HSV-tk) gene. The quantitative method uses complementary strand hybridization to gapped duplex DNA molecules and chloramphenicol selection. This design ensures exclusive analysis of mutations derived from the DNA strand produced during in vitro synthesis. We have examined the accuracy of DNA synthesis catalyzed by calf thymus polymerase alpha-primase, polymerase beta and exonuclease-deficient Klenow polymerase. Using unmodified DNA templates, polymerase beta displays a unique specificity for the loss of two bases in a dinucleotide repeat sequence within the HSV-tk locus. Treatment of the DNA template with N-ethyl-N-nitrosourea resulted in a dose-dependent inhibition of DNA synthesis concomitant with an increased mutation frequency. Similar dose-response curves were measured for the three polymerases examined; thus the identity of the DNA polymerase does not appear to affect the mutagenic potency of ethyl lesions. The HSV-tk system is unique in that damage-induced mutagenesis can be analyzed both quantitatively and qualitatively in human cells, in bacterial cells and in in vitro DNA synthesis reactions at a single target sequence.  相似文献   

18.
We isolated active mutants in Saccharomyces cerevisiae DNA polymerase alpha that were associated with a defect in error discrimination. Among them, L868F DNA polymerase alpha has a spontaneous error frequency of 3 in 100 nucleotides and 570-fold lower replication fidelity than wild-type (WT) polymerase alpha. In vivo, mutant DNA polymerases confer a mutator phenotype and are synergistic with msh2 or msh6, suggesting that DNA polymerase alpha-dependent replication errors are recognized and repaired by mismatch repair. In vitro, L868F DNA polymerase alpha catalyzes efficient bypass of a cis-syn cyclobutane pyrimidine dimer, extending the 3' T 26000-fold more efficiently than the WT. Phe34 is equivalent to residue Leu868 in translesion DNA polymerase eta, and the F34L mutant of S. cerevisiae DNA polymerase eta has reduced translesion DNA synthesis activity in vitro. These data suggest that high-fidelity DNA synthesis by DNA polymerase alpha is required for genomic stability in yeast. The data also suggest that the phenylalanine and leucine residues in translesion and replicative DNA polymerases, respectively, might have played a role in the functional evolution of these enzyme classes.  相似文献   

19.
RNA polymerase B and DNA polymerase alpha were highly enriched simultaneously from calf thymus. It was shown that the preparation exhibits RNA-synthesizing activity, which is able to stimulate in vitro DNA synthesis by DNA polymerase alpha by its preceding RNA synthesis. A part of the DNA was found to be covalently attached to RNA in Cs2SO4 equilibrium gradients after denaturation by formamide.  相似文献   

20.
During purification of the native alpha-like DNA polymerase from the hyperthermophilic euryarchaeote Thermococcus fumicolans, two activity peaks were detected after cation-exchange chromatography. One of the peaks (Ppol) was identified as the T. fumicolans DNA polymerase and the second peak (Pf) was shown to contain a factor which increased the DNA polymerase activity over 70-fold when tested with activated calf thymus DNA as substrate. The factor also stimulated nucleotide incorporation when using primed lambda DNA as substrate (approximately 8-fold), while inducing a very large decrease in the turnover rate of the enzyme. The factor, therefore, maximizes the ability of the DNA polymerase to synthesize small fragments, which is compatible with DNA repair or lagging strand DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号