首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Lincomycin-resistant Nicotiana plumbaginifolia plastid mutants were considered also to carry mitochondrial mutations on the basis of their ability to grow in the dark under selective conditions. To clarify the role of mitochondria, individual protoplasts of the green, lincomycin-resistant N. plumbaginifolia mutant LR400 were microfused with protoplasts of the N. tabacum plastid albino line 92V37, which possesses N. undulata cytoplasm. The production of lincomycin-resistant albino cybrid lines, with N. undulata plastids and recombinant mitochondria, strongly indicated a determining role for mitochondria in the lincomycin resistance. Sequence analysis of the region encompassing putative mutation sites in the 26S rRNA genes from the LR400 and several other lincomycin-resistant N. plumbaginifolia mutants revelaed, however, no differences from the wild-type sequence. As an alternative source of the resistance of the fusion products, the N. tabacum fusion partner was also taken into account. Surprisingly, a natural lincomycin resistance of tobacco was detected, which was inherited as a dominant nuclear trait. This result compromises the interpretation of the fusion data suggested above. Thus, to answer the original question definitively, the mutant LR400 was crossed as a female parent with a N. plumbaginifolia line carrying streptomycin-resistant N. tabacum plastids. Calli were then induced from the seedlings. Occasional paternal plastid transmissions were selected as streptomycin-resistant calli on selective medium. These cell lines were shown by restriction enzyme analysis to contain paternal plastids and maternal mitochondria. They were tested for greening and growing ability in the presence of lincomycin. These resistance traits proved to be genetically linked and exclusively located in the plastids.EMBL accession number X68710  相似文献   

2.
Summary Terbutryn-resistant plastids of the Nicotiana plumbaginifolia TBR2 mutant were introduced into N. tabacum plants by protoplast fusion following X-irradiation of TBR2 protoplasts. The N. tabacum chloroplast recipient line, SR1-A15, carried mutant (albino) plastids. Following protoplast fusion, potential cybrid cell lines with an N. tabacum (SR1-A15) nucleus and N. plumbaginifolia (TBR2) chloroplasts were identified by their green color. The presence of TBR2 plastids in regenerated green N. tabacum plants was confirmed by hybridization with a chloroplast DNA probe and by the modified chloroplast fluorescence transients characteristic of the TBR2 mutant. Cybrid plants were resistant to high levels of atrazine (10 kg/ha). The protruding stigma and shorter than normal filaments of the cybrids resulted in male sterility. In the cybrids atrazine resistance was associated with reduced vigour, suggesting a causal relationship.  相似文献   

3.
Summary Transmission of paternal chloroplasts was observed in Nicotiana, considered to inherit organelles in a strictly maternal way. Plants carrying streptomycin resistant plastids were used as pollen donors. Cell lines with paternal plastids in the offspring were selected as green (resistant) sectors on calli induced from the seedlings on streptomycin-containing media. The presence of paternal plastids in the regenerated plants was confirmed by restriction analysis. In the Nicotiana plumbaginifolia xN. plumbaginifolia Np(SR1)3 and the N. plumbaginifolia Np(gos)29 xN. tabacum SR1 crosses 2.5% and 0.07% of the offspring were found to contain paternal (tabacum) plastids, respectively. These plants, however, carried maternal mitochondria exclusively. This sexual cybridization method offers a simple way to transfer chloroplasts solely, a goal not accessible by protoplast fusion.  相似文献   

4.
Summary Resistance to streptomycin and lincomycin in plant cell culture is used as a color marker: resistant cells are green whereas sensitive cells are white on the selective medium. Streptomycin and lincomycin at appropriate concentrations do not kill sensitive Nicotiana cells. The selective value of plastid ribosomal DNA mutations, conferring resistance to streptomycin and lincomycin, was investigated by growing heteroplastidic cells on a selective medium. The heteroplastidic cells were obtained by protoplast fusion, and contained a mixed population of streptomycin resistant plastids from the N. tabacum line Nt-SR1-Kan2, and lincomycin resistant plastids from the N. plumbaginifolia line Np-LR400-Hyg1. Clones derived from protoplast fusion were selected by kanamycin and hygromycin resistance, transgenic nuclear markers. Somatic hybrids were then grown on a selective streptomycin or lincomycin medium, or in the absence of either drug to a 50 to 100 mg size callus. Southern analysis of a polymorphic region of plastid DNA (ptDNA) revealed that somatic hybrids grown on streptomycin contained almost exclusively ptDNA from the streptomycin resistant parent, somatic hybrids grown on lincomycin contained almost exclusively ptDNA from the lincomycin resistant parent whereas somatic hybrids grown in the absence of either drug contained mixed parental plastids. Sensitive ptDNA was below detection level in most clones on selective medium, but could be recovered upon subsequent culture in the presence of the appropriate drug. The drugs streptomycin and lincomycin provide a powerful selection pressure that should facilitate recovery of plastid transformants.  相似文献   

5.
Medgyesy et al. (1986, Mol. Gen. Genet. 204, 195–198) have described in Nicotiana plumbaginifolia and in an interspecific cross involving N. plumbaginifolia and N. tabacum a procedure for selecting cell lines derived from seedlings carrying paternal chloroplasts by taking advantage of a plastid-encoded mutation which confers resistance to streptomycin. We have extended their demonstration of occasional transmission of chloroplasts through pollen to the case of an intraspecific cross in N. tabacum. The line used as maternal parent, ITB19(sua), displayed a cytoplasmic male sterility due to the presence of a cytoplasm originating from N. suaveolens. The line used as paternal parent, SR1, was fertile and possessed mutant chloroplasts conferring resistance to streptomycin. From cell lines derived from 204 seedlings, three were regenerated into streptomycin-resistant buds. The plants derived from these three clones were male-sterile. Their progeny, after crossing with a wild type tobacco line, XHFD8, was resistant to streptomycin. Tests of resistance of the seedlings to tentoxin and restriction analyses of the chloroplast DNA indicated that two clones still had the maternal chloroplasts and were thus probably new streptomycin-resistant mutants, whereas the third one had acquired the chloroplasts of the paternal parent, but had retained the mitochondria of the maternal parent.Abbreviations cp-DNA chloroplast DNA - mt-DNA mitochondrial DNA - Np Nicotiana plumbaginifolia - Nt Nicotiana tabacum  相似文献   

6.
Plastids from Nicotiana benthamiana were transformed with the vector for dicistronic expression of two genes—aminoglycoside 3'-adenyltransferase (aadA) and green fluorescent protein (gfp)—in the plastids of Nicotiana tabacum. Transplastomic shoots exhibited green fluorescence under UV light. Transformation efficiencies were similar between species. Although the border sequence (trnI and trnA) for homologous recombination to transform the plastid genome of N. benthamiana was identical to that sequence of N. tabacum, the exception was a 9-bp addition in the intron of trnI. This indicated that the N. tabacum sequence used as a border region for recombination was sufficient to insert the foreign gene into the target site between the trnI and trnA of N. benthamiana with similar efficiency. Southern blot analysis detected the presence of aadA and gfp between trnI and trnA in the plastid genome of N. benthamiana. Northern and western blot analyses revealed high expression of gfp in the plastids from petals and leaves. Our results suggest that the plastid transformation system established here is applicable to investigations of the interactions between plastid and nucleus in N. benthamiana.  相似文献   

7.
Summary Electrically-induced protoplast fusion has been used to produce somatic hybrids between Nicotiana plumbaginifolia and Nicotiana tabacum. Following fusion of suspension culture protoplasts (N. plumbaginifolia) with mesophyll protoplasts (N. tabacum) heterokaryons were identified visually and their development was followed in culture. Because electrical fusion is a microtechnique, procedures were developed for culturing the heterokaryons in small numbers and at low density. The fusion and culture procedures described are rapid, uncomplicated and repeatable. Good cell viabilities indicate that the fusion procedure is not cytotoxic. Fused material was cultured 1–2 days at high density in modified K3 medium (Nagy and Maliga 1976). The heterokaryons were isolated manually and grown, at low density in conditioned media. Calli have been regenerated. Esterase isozyme patterns confirm the hybrid character of calli and clonally-derived plantlets recovered from these fusions.  相似文献   

8.
An effective selection system preceded by double inactivation of parental protoplasts was used to transfer Nicotiana suaveolens Leh. cytoplasmic male sterility into a commercial tobacco (N. tabacum L.) breeding line. Mesophyll protoplasts from transformed plants of N. tabacum cultivar WZ2-3-1-1 possessing a neomycin phosphotransferase II gene were used as the nuclear donors, while those isolated from N. suaveolens plants carrying a chloroplast mutation for resistance to spectinomycin, induced using nitrosomethyl urea, were the cytoplasm donors in somatic cybridizations. Prior to fusion, nuclear donor protoplasts were inactivated with iodoacetamide or rhodamine 6G, while those of the cytoplasm donor were inactivated by X-irradiation. The resultant microcalli were cultured on a shoot regeneration medium containing both kanamycin and spectinomycin to select cybrids. Only regenerants that had typical characteristics of the N. tabacum cultivar were selected for transfer to the glasshouse. Four putative cytoplasmic male-sterile (CMS) plants, out of a total of 44 regenerated plants transferred to the glasshouse, were obtained. Intraspecific somatic transfers of the CMS trait between N. tabacum cultivars with distinctlydifferent morphologies using single inactivation and nonselective shoot regeneration medium were demonstrated. The implications of the results for practical tobacco breeding as a means of circumventing lengthy backcrossing procedures are discussed.  相似文献   

9.
Summary Vegetative segregation of a mixed plastid population in protoplast fusion-derived cell lines can be directed by a selection favouring the multiplication of one of the parental plastid types. This report defines some of the critical conditions leading to a homogeneous plastid population in cybrid plants generated by protoplast fusion between Nicotiana plumbaginifolia and an albino and streptomycin-resistant N. tabacum plastid mutant. Light (1,500 lx) conferred a strong selective advantage to chloroplasts versus albino plastids, while the lack of this effect in dim light (300 lx) indicated that a sufficient light intensity is essential to the phenomenon. Selection on streptomycin-containing medium in the dark, however, led to the preferential multiplication of resistant plastids. Streptomycin selection of resistant chloroplasts in the light, consequently, results in a plastid selection of doubled stringency. In another experiment a definite, but leaky, selection for chloroplast recombination (selection for greening on streptomycin-containing medium in dim light) was used to reveal various recombination products. Protoplast fusion in fact resulted in cybrid plants showing only simple chimeric segregation of unchanged parental plastids. These results demonstrate the essential requirement for stringent plastid selection, as defined by cell culture conditions, to precede the formation of shoots expected to possess the desired plastid genetic composition.  相似文献   

10.
Summary The mitochondrial genomes of cybrids of Nicotiana tabacum containing chloroplasts of Petunia hybrida were characterized by restriction endonuclease digestion and agarose gel electrophoresis. Cybrids that displayed normal growth and development contained mitochondrial DNA indistinguishable from N. tabacum mitochondrial DNA. Cybrids that displayed abnormal growth and development contained mitochondrial DNA that differed from N. tabacum either by possessing a few additional fragments, by lacking a few fragments, or both. In spite of these differences, the mitochondrial DNA of cybrids showing abnormal growth and development was much more similar to N. tabacum than to P. hybrida mitochondrial DNA. In those cybrids that contained P. hybrida chloroplasts and N. tabacum mitochondria, cotransfer of cytoplasmic organelles did not occur. Although P. hybrida chloroplasts can interact compatibly with the N. tabacum nucleus, no cybrids were found in which P. hybrida mitochondria coexisted with the N. tabacum nucleus.  相似文献   

11.
Summary A light sensitive mutant was used as a recipient in the transfer of chloroplasts from a wildtype donor. Gamma irradiated (lethal dose) mesophyll protoplasts of Nicotiana gossei were fused with mesophyll protoplasts of a N. plumbaginifolia line carrying light sensitive plastids from a N. tabacum mutant. After fusion, colonies containing wild-type plastids from the cytoplasm donor were selected by their green colour. Most of the regenerated plants had N. plumbaginifolia morphology, but were a normal green in colour. The presence of donor-type plastids was confirmed by the restriction pattern of chloroplast DNA in each plant analysed. These cybrids were fully male sterile with an altered flower morphology typical of certain types of alloplasmic male sterility in Nicotiana. The use of the cytoplasmic light sensitive recipient proved to be suitable for effective interspecific transfer of wild-type chloroplasts. The recombinant-type mitochondrial DNA restriction patterns and the male sterility of the cybrids indicated the co-transfer of chloroplast and mitochondrial traits. On leave from: Department of Genetics, Section of Biosciences, Martin Luther University, Domplatz 1, DDR-4020 Halle/ S., German Democratic Republic  相似文献   

12.
Summary Defined numbers (1–5) of (donor) chloroplasts were transferred into (acceptor) protoplasts of plastid albino mutants by subprotoplast/protoplast microfusion. Single transferred plastids gave rise to new organelle populations in the progeny of the fusion products when suitable combinations of plastomes were used or when selective pressure for the plastome transferred was applied. This process is termed chloroplast cloning and is the first reported case of cloning a cell organelle. The plastome combination and the presence or absence of selective pressure were found to influence the frequencies with which cell lines, containing both plastomes or acceptor or donor only, were obtained, and the number of cell generations needed for complete segregation — as measured by the duration of culture before the green donor plastome could be detected. The high frequency of cell lines and regenerated shoots recovered with donor plastome only, even when only a single chloroplast was transferred, leads to the conclusion that all organelles present in the fusion product contribute to the organelle population of the progeny, i.e. organelle death or loss are not regularly occurring events during plant regeneration from protoplasts in Nicotiana tabacum.Some of the results reported here were presented at the 8th International Protoplast Symposium, Uppsala 1991  相似文献   

13.
Summary The nuclei and cytoplasm ofN. gossei andN. tabacum are compatible to the extent that reciprocal, interspecific F1 hybrids can be produced by conventional breeding techniques. Conditions were established in which manyN. gossei isolated chloroplasts could be seen by phase and fluorescence microscopy to adhere to 40% of the population of protoplasts obtained from white tissue of variegatedN. tabacum plants and to remain attached after washing the protoplasts. Chloroplasts also could be seen to enter the interior of the protoplasts. After treating albino protoplasts withN. gossei chloroplasts, the protoplasts were subjected to further conditions whereby 65 calluses containing shoots developed. TwentyN. tabacum protoplasts not treated with foreign chloroplasts also produced calluses with shoots to serve as a control. All calluses developed chlorophyll irrespective of whether or not the albino protoplasts had been treated with isolatedN. gossei chloroplasts. The Fraction 1 protein ofN. tabacum has a different electrophoretic mobility from the protein ofN. gossei or anN. gossei xN. tabacum F1 hybrid. The Fraction 1 protein large subunit is coded by chloroplast DNA, whereas the small subunit is coded by nuclear DNA. Fraction 1 protein was isolated from the variegated shoots of the 65 calluses obtained after treating albino protoplasts with foreign chloroplasts. Immunoelectrophoresis demonstrated the protein from each callus to have a mobility identical toN. tabacum protein. Therefore, under circumstances highly favorable for the direct transfer ofN. gossei isolated chloroplasts (and possibly nuclei also) intoN. tabacum protoplasts, no evidence was obtained to suggest that genetic information contained in the isolated foreign organelles was being translated into the polypeptides of either the large or small subunits of Fraction 1 protein contained in newly differentiated leaves derived from the protoplasts. Supported by Research Grant PCM-75-07368 from the National Science Foundation.  相似文献   

14.
Physical mapping of plastid DNA variation among eleven Nicotiana species   总被引:1,自引:0,他引:1  
Summary Plastid DNA of seven American and four Australian species of the genus Nicotiana was examined by restriction endonuclease analysis using the enzymes Sal I, Bgl I, Pst I, Kpn I, Xho I, Pvu II and Eco RI. These endonucleases collectively distinguish more than 120 sites on N. tabacum plastid DNA. The DNAs of all ten species exhibited restriction patterns distinguishable from those of N. tabacum for at least one of the enzymes used. All distinctive sites were physically mapped taking advantage of the restriction cleavage site map available for plastid DNA from Nicotiana tabacum (Seyer et al. 1981). This map was extended for the restriction endonucleases Pst I and Kpn I. In spite of variation in detail, the overall fragment order was found to be the same for plastid DNA from the eleven Nicotiana species. Most of the DNA changes resulted from small insertions/deletions and, possibly, inversions. They are located within seven regions scattered along the plastid chromosome. The divergence pattern of the Nicotiana plastid chromosomes was strikingly similar to that found in the genus Oenothera subsection Euoenothera (Gordon et al. 1982). The possible role of replication as a factor in the evolution of divergence patterns is discussed. The restriction patterns of plastid DNA from species within a continent resembled each other with one exception in each instance. The American species N. repanda showed patterns similar to those of most Australian species, and those of the Australian species N. debneyi resembled those of most American species.Abbreviations ims isonuclear male sterile - ptDNA plastid chloroplast DNA - Rubisco ribulosebisphosphate carboxylase/oxygenase - kbp kilobase pairs - LSU large subunit of Rubisco  相似文献   

15.
Summary Defined cybridization was performed by one-to-one electrofusion (microfusion) of preselected protoplast-cytoplast pairs of male-fertile, streptomycin-resistant Nicotiana tabacum and cytoplasmic male-sterile, streptomycin-sensitive N. tabacum cms (N. bigelovii), followed by microculture of the fusion products until plant regeneration. Dominant selectable markers, namely, kanamycin resistance (nptII) and hygromycin B resistance (hpt) genes had been previously integrated in the nuclear genomes of the otherwise almost fully isogenic parental strains using direct gene transfer to protoplasts. In addition to chromosome counts indicating the expected allotetraploid tobacco count of 48, the absence of the nucleus from the cytoplast donor line was confirmed by Southern blot hybridization using nptII and hpt probes, as well as by an in vitro selection test with leaf expiants and the corresponding enzyme assays for 30 cybrids. The cytoplasmic composition of the cybrids obtained was analyzed for chloroplast type using the streptomycin resistance/sensitivity locus. The fate of mitochondria in cybrids was checked by species-specific patterns in Southern analysis of restriction endonuclease digests of total DNA with N. sylvestris mitochondrial DNA probes.  相似文献   

16.
Summary A simple, yet effective selection system was used to produce fertile somatic hybrids betweenNicotiana tabacum andN. debneyi. This approach utilized transgenic antibiotic-resistantN. tabacum andN. Debneyi as donor plants for mesophyll protoplast fusions. Thirteen somatic hybrid plants were regenerated from calli capable of growth on medium containing both antibiotics. The majority of the hybrids displayed a range of leaf and floral morphologies and growth habits that were intermediate to those of the parental species, and had chromosome numbers varying from amphidiploid (2n = 96) to hypoaneuploid (2n = 60). Isoenzyme and RFLP analysis demonstrated the presence and expression of nuclear genes from both parents in all of the hybrids. Most plants are fully fertile. Thus, these plants differ from the malesterile tobacco cybrids and alloplasmic lines produced by transferring theN. debneyi cytoplasm to tobacco. A nonrandom pattern of cytoplasmic segregation in the fusion products occurred with a bias towards the presence ofN. debneyi cp and mtDNA. Evidence for the presence of rearranged or recombinant cp and mtDNA in some of the hybrids was obtained. The somatic hybrids were successfully backcrossed to theN. tabacum parent and are now being tested for immunity to black root rot, a trait specific toN. debneyi, but not existent in theN. tabacum parental line.  相似文献   

17.
Patterns of organelle inheritance were examined among fertile somatic hybrids between allotetraploid Nicotiana tabacum L. (2n=4x=48) and a diploid wild relative N. glutinosa L. (2n=2x=24). Seventy somatic hybrids resistant to methotrexate and kanamycin were recovered following fusion of leaf mesophyll protoplasts of transgenic methotrexate-resistant N. tabacum and kanamycin-resistant N. glutinosa. Evidence for hybridization of nuclear genomes was obtained by analysis of glutamate oxaloacetate transaminase and peroxidase isoenzymes and by restriction fragment length polymorphism (RFLP) analysis using a heterologous nuclear ribosomal DNA probe. Analysis of chloroplast genomes in a population of 41 hybrids revealed a random segregation of chloroplasts since 25 possessed N. glutinosa chloroplasts and 16 possessed N. tabacum chloroplasts. This contrasts with the markedly non-random segregation of plastids in N. tabacum (+)N. rustica and N. tabacum (+) N. debneyi somatic hybrids which we described previously and which were recovered using the same conditions for fusion and selection. The organization of the mitochondrial DNA (mtDNA) in 40 individuals was examined by RFLP analysis with a heterologous cytochrome B gene. Thirty-eight somatic hybrids possessed mitochondrial genomes which were rearranged with respect to the parental genomes, two carried mtDNA similar to N. tabacum, while none had mtDNA identical to N. glutinosa. The somatic hybrids were self-fertile and fertile in backcrosses with the tobacco parent.Contribution No. 1487 Plant Research Centre  相似文献   

18.
Summary Nuclear hybrids have been obtained by fusion of mesophyll protoplasts ofNicotiana plumbaginifolia and x-irradiated or iodoacetate-treated mesophyll protoplasts of a kanamycin-resistant line ofN. tabacum. The effect of irradiation on the recovery of asymmetric hybrids was evaluated by analysis of their morphology, fertility, chromosome number, isozyme patterns, restriction patterns in their organelle DNAs, and presence of the kanamycin-resistance gene. The results presented in this paper show that x-ray irradiation leads to a significant reduction in the amount ofN. tabacum genome present in the hybrids and demonstrates, once more, the power of this technique to induce directional loss of genomic traits of the irradiated parent.  相似文献   

19.
Summary Our previous studies indicated that fusion products with one functional nucleus but organelles of the two fusion partners (i.e. heteroplastomic cybrids) could be obtained by fusing X-irradiated (cytoplasmic donor) with non-irradiated (recipient) Nicotiana protoplasts. The present report deals with the analysis of mitochondria in cybrid populations resulting from the fusion of donor Nicotiana tabacum protoplasts with recipient protoplasts having a N. Sylvestris nucleus but chloroplasts of an alien Nicotiana species, and exhibiting cytoplasmic male sterility. The two fusion parents showed significant differences in restriction patterns of their chloroplast and mitochondrial DNA. Four groups of cybrid plants were obtained by this fusion. All had N. sylvestris nuclei but contained either donor or recipient chloroplasts and had either sterile or fertile anthers. There was no correlation between anther fertility and chloroplasts type. The mitochondrial DNA restriction patterns of sterile cybrids were similar to the respective patterns of the sterile fusion partner while the mitochondrial DNA restriction patterns of the fertile cybrids were similar to the respective patterns of the fertile fusion partner. The results indicate an independent assortment of chloroplasts and mitochondria from the heteroplastomic fusion products.  相似文献   

20.
Summary Chloroplast tranfer was achieved by protoplast fusion between Nicotiana tobacum (Cestreae, Cestroideae) and Salpiglossis sinuata (Salpiglossideae, Cestroideae) in the family Solanaceae. Isolation of cybrid clones was facilitated by irradiation of the cytoplasm donor protoplasts, and the use of appropriate plastid mutants, streptomycin-resistant as donor, or light-sensitive as recipient. Cybrid colonies were selected by their green colour against the background of bleached (light-sensitive or streptomycin-sensitive) colonies. In the Nicotiana (Salpiglossis) cybrid plants possessing normal tobacco morphology and chromsome number, the presence of Salpiglossis, plastids was verified by restriction analysis of the chloroplast DNA. A similar analysis of the mitochondrial DNA of these lines revealed unique, recombinant patterns in the case of both fertile and sterile plants. Progeny showed no appearance of chlorophyll-deficiency in F1 and an additional back-cross generation. Attempts at transfer of entire chloroplasts between Nicotiana tabacum and Solanum nigrum (Solaneae, Solanoideae) did not result in any cybrid cell lines in a medium suitable for green colony formation of both species. These results suggest that fusion-mediated chloroplast transfer can surmount a considerable taxonomical distance, but might be hampered by a plastome-genome incompatibility in more remote combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号