首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We developed a field-effect transistor (FET)-based enzyme sensor that detects an enzyme-catalyzed redox-reaction event as an interfacial potential change on an 11-ferrocenyl-1-undecanethiol (11-FUT) modified gold electrode. While the sensitivity of ion-sensitive FET (ISFET)-based enzyme sensors that detect an enzyme-catalyzed reaction as a local pH change are strongly affected by the buffer conditions such as pH and buffer capacity, the sensitivity of the proposed FET-based enzyme sensor is not affected by them in principle. The FET-based enzyme sensor consists of a detection part, which is an extended-gate FET sensor with an 11-FUT immobilized gold electrode, and an enzyme reaction part. The FET sensor detected the redox reaction of hexacyanoferrate ions, which are standard redox reagents of an enzymatic assay in blood tests, as a change in the interfacial potential of the 11-FUT modified gold electrode in accordance with the Nernstian response at a slope of 59 mV/decade at 25 degrees C. Also, the FET sensor had a dynamic range of more than five orders and showed no sensitivity to pH. A FET-based enzyme sensor for measuring cholesterol level was constructed by adding an enzyme reaction part, which contained cholesterol dehydrogenase and hexacyanoferrate (II)/(III) ions, on the 11-FUT modified gold electrode. Since the sensitivity of the FET sensor based on potentiometric detection was independent of the sample volume, the sample volume was easily reduced to 2.5 microL while maintaining the sensitivity. The FET-based enzyme sensor successfully detected a serum cholesterol level from 33 to 233 mg/dL at the Nernstian slope of 57 mV/decade.  相似文献   

2.
A relatively simple potentiometric pCO2 gas-sensing microelectrode is described. It is based on an ion-exchanger pH electrode, has a 2- to 5-microns tip, and has an air gap which is formed by means of hydrophobic treatments. The microelectrode exhibits a linear response in the range 10(-4)-10(-2) M with a Nernstian slope of 59 to 62 mV/decade at 25 degrees C. Ninety-five percent of the steady-state response time is about 20-30 s at the flow system when the concentration of sodium bicarbonate in buffer solution (pH 4.5) suddenly shifts from 0.2 to 2 mM and the lifetime is longer than 1 week.  相似文献   

3.
A new formaldehyde-selective biosensor was constructed using NAD+- and glutathione-dependent recombinant formaldehyde dehydrogenase as a bio-recognition element immobilised on the surface of Si/SiO2/Si3N4 structure. Sensor's response to formaldehyde was evaluated by capacitance measurements. The calibration curves obtained for formaldehyde concentration range from 10 μM to 20 mM showed a broad linear response with a sensitivity of 31 mV/decade and a detection limit about 10 μM. It has been shown that the output signal decreases with the increase of borate buffer concentration and the best sensitivity is observed in 2.5 mM borate buffer, pH 8.40. The response of the created formaldehyde-sensitive biosensor has also been examined in 2.5 mM Tris–HCl buffer, and the shift to the positive bias of the C(V) curves along with the potential axis has been observed, but the sensitivity of the biosensor in this buffer is decreased dramatically to the value of 2.4 mV/decade.  相似文献   

4.
In the present work, an amperometric inhibition biosensor for the determination of sulfide has been fabricated by immobilizing Coprinus cinereus peroxidase (CIP) on the surface of screen printed electrode (SPE). Chitosan/acrylamide was applied for immobilization of peroxidase on the working electrode. The amperometric measurement was performed at an applied potential of -150 mV versus Ag/AgCl with a scan rate of 100 mV in the presence of hydroquinone as electron mediator and 0.1M phosphate buffer solution of pH 6.5. The variables influencing the performance of sensor including the amount of substrate, mediator concentration and electrolyte pH were optimized. The determination of sulfide can be achieved in a linear range of 1.09-16.3 μM with a detection limit of 0.3 μM. Developed sensor showed quicker response to sulfide compared to the previous developed sulfide biosensors. Common anions and cations in environmental water did not interfere with sulfide detection by the developed biosensor. Cyanide interference on the enzyme inhibition caused 43.25% error in the calibration assay which is less than the amounts reported by previous studies. Because of high sensitivity and the low-cost of SPE, this inhibition biosensor can be successfully used for analysis of environmental water samples.  相似文献   

5.
A potentiometric urea-sensitive biosensor using a NH4(+)-sensitive disposable electrode in double matrix membrane (DMM) technology as transducer is described. The ion-sensitive polymer matrix membrane was formed in the presence of an additional electrochemical inert filter paper matrix to improve the reproducibility in sensor production. The electrodes were prepared from one-side silver-coated filter paper, which is encapsulated for insulation by a heat-sealing film. A defined volume of the NH4(+)-sensitive polymer matrix membrane cocktail was deposited on this filter paper. To obtain the urea-biosensor a layer of urease was cast onto the ion-sensitive membrane. Poly (carbamoylsulfonate) hydrogel, produced from a hydrophilic polyurethane prepolymer blocked with bisulfite, served as immobilisation material. The disposable urea sensitive electrode was combined with a disposable Ag/AgCl reference electrode to obtain the disposable urea biosensor. The sensor responded rapidly and in a stable manner to changes in urea concentrations between 7.2 x 10(-5) and 2.1 x 10(-2)mol/l. The detection limit was 2 x 10(-5) mol/l urea and the slope in the linear range 52 mV/decade. By taking into consideration the influence of the interfering K(+)- and Na(+)-ions the sensor can be used for the determination of urea in human blood and serum samples (diluted or undiluted). A good correlation was found with the data obtained by the spectrophotometric routine method.  相似文献   

6.
The membrane potential of intact bacteria was monitored by measuring the tetraphenylphosphonium ion distribution across the membrane using poly--(vinyl chloride) matrix-type electrode selective to tetraphenylphosphonimum ion. It was found that the tetraphenylphosphonium ion was not countertransported against H+ movement. The membrane potential of Bacillus subtilis was estimated to be 80-120 mV inside-negative at external pH 7. The effect of the external pH on the membrane potential was studied. It varied from 30 to 40 mV/decade change in the external [H+] in the pH region of greater than 6.5, increasing pH making it more inside-negative. The addition of carbonyl cyanide m-chlorophenylhydrazone depolarized the membrane, and the membrane potential approached the H+ equilibrium potential. The addition of N,N'-dicyclohexylcarbodiimide did not abolish the pH dependence of the membrane potential. Increasing the external [K+] did not affect the pH dependence. CN- partially depolarized the membrane. A parallel conductance model for membrane potential could explain the results qualitatively.  相似文献   

7.
A new enzyme electrode for the determination of alcohols was developed by immobilizing alcohol oxidase in polvinylferrocenium matrix coated on a Pt electrode surface. The amperometric response due to the electrooxidation of enzymatically generated H(2)O(2) was measured at a constant potential of +0.70 V versus SCE. The effects of substrate, buffer and enzyme concentrations, pH and temperature on the response of the electrode were investigated. The optimum pH was found to be pH 8.0 at 30 degrees C. The steady-state current of this enzyme electrode was reproducible within +/-5.0% of the relative error. The sensitivity of the enzyme electrode decreased in the following order: methanol>ethanol>n-butanol>benzyl alcohol. The linear response was observed up to 3.7 mM for methanol, 3.0 mM for ethanol, 6.2 mM for n-butanol, and 5.2 mM for benzyl alcohol. The apparent Michaelis-Menten constant (K(Mapp)) value and the activation energy, E(a), of this immobilized enzyme system were found to be 5.78 mM and 38.07 kJ/mol for methanol, respectively.  相似文献   

8.
Laccase purified from Ganoderma sp. was immobilized covalently onto electrochemically deposited silver nanoparticles (AgNPs)/carboxylated multiwalled carbon nanotubes (cMWCNT)/polyaniline (PANI) layer on the surface of gold (Au) electrode. A polyphenol biosensor was fabricated using this enzyme electrode (laccase/AgNPs/cMWCNT/PANI/Au electrode) as the working electrode, Ag/AgCl as the reference electrode, and platinum (Pt) wire as the auxiliary electrode connected through a potentiostat. The biosensor showed optimal response at pH 5.5 (0.1 M acetate buffer) and 35 °C when operated at a scan rate of 50 mV s−1. Linear range, response time, and detection limit were 0.1–500 μM, 6 s, and 0.1 μM, respectively. The sensor was employed for the determination of total phenolic content in tea, alcoholic beverages, and pharmaceutical formulations. The enzyme electrode was used 200 times over a period of 4 months when stored at 4 °C. The biosensor has an advantage over earlier enzyme sensors in that it has no leakage of enzyme during reuse and is unaffected by the external environment due to the protective PANI microenvironment.  相似文献   

9.
A choline (CHO) biosensor based on the determination of H(2)O(2) generated at the electrode surface by the enzyme choline oxidase (CHOx) was developed. The biosensor consisted of CHOx retained onto a horseradish peroxidase (HRP) immobilized solid carbon paste electrode (sCPE). The HRPsCPE contained the molecule phenothiazine as redox mediator and CHOx was physically retained on the electrode surface using a dialysis membrane. Several parameters have been studied such as, mediator amount, influence of applied potential, etc. The CHO measurements were performed in 0.1 M phosphate buffer, pH 7.4. Amperometric detection of CHO was realized at an applied potential of 0.0 mV vs Ag/AgCl. The response is linear over the concentration range 5.0x10(-7)-7.0x10(-5) M, with a detection limit of 1.0x10(-7) M. This biosensor was used to detect choline released from phosphatidylcholine (PC) by phospholipase D (PLD) in isolated rat salivary gland cells stimulated by a purinergic agonist (ATP).  相似文献   

10.
A biosensor for the specific determination of uric acid in urine was developed using urate oxidase (EC 1.7.3.3) in combination with a dissolved oxygen probe. Urate oxidase was immobilized with gelatin by means of glutaraldehyde and fixed on a pretreated teflon membrane to serve as enzyme electrode. The electrode response was maximum when 50 mM glycine buffer was used at pH 9.2 and 35 degrees C. The enzyme electrode response depends linearly on uric acid concentration between 5-40 microM with a response time of 5 min. The enzyme electrode is stable for more than 2 weeks and during this period over 35 assays were performed.  相似文献   

11.
A formate-selective biocatalytic potentiometric electrode system based on whole cells Pseudomonas oxalaticus has been developed. Permeation of the Gram-negative Pseudomonas oxalaticus microbial cells by EDTA is shown to improve the response slope from 38 mV/decade to 49 mV/decade, resulting in increased sensitivity. Out of 13 possibly interfering compounds tested, only pyruvate and lactate showed moderate response.  相似文献   

12.
Three amperometric biosensors based on immobilization of tyrosinase on a new Sonogel-Carbon electrode for detection of phenols and polyphenols are described. The electrode was prepared using high energy ultrasounds (HEU) directly applied to the precursors. The first biosensor was obtained by simple adsorption of the enzyme on the Sonogel-Carbon electrode. The second and the third ones, presenting sandwich configurations, were initially prepared by adsorption of the enzyme and then modification by mean of polymeric membrane such as polyethylene glycol for the second one, and the ion-exchanger Nafion in the case of the third biosensor. The optimal enzyme loading and polymer concentration, in the second layer, were found to be 285 U and 0.5%, respectively. All biosensors showed optimal activity at the following conditions: pH 7, -200 mV, and 0.02 mol l(-1) phosphate buffer. The response of the biosensors toward five simple phenols derivatives and two polyphenols were investigated. It was found that the three developed tyrosinase Sonogel-Carbon based biosensors are in satisfactory competitiveness for phenolic compounds determination with other tyrosinase based biosensors reported in the literature. The detection limit, sensitivity, and the apparent Michaelis-Menten constant K(m)(app) for the Nafion modified biosensor were, respectively, 0.064, 0.096, and 0.03 micromol, 82.5, 63.4, and 194 nA micromol(-1)l(-1), and 67.1, 54.6, and 12.1 micromol l(-1) for catechol, phenol, and 4-chloro-3-methylphenol. Hill coefficient values (around 1 for all cases), demonstrated that the immobilization method does not affect the nature of the enzyme and confirms the biocompatibility of the Sonogel-Carbon with the bioprobe. An exploratory application to real samples such as beers, river waters and tannery wastewaters showed the ability of the developed Nafion/tyrosinase/Sonogel-Carbon biosensor to retain its stable and reproducible response.  相似文献   

13.
A new salicylate-selective electrode based on the complex of (2-[(E)-2-(4-nitrophenyl)hydrazono]-1-phenyl-2-(2-quinolyl)-1-ethanone) Cu(II) as the membrane carrier was developed. The electrode exhibited a good Nernstian slope of -59.6+/-1.0 mV/decade and a linear range of 1.0 x 10(-6) to 1.0M for salicylate. The limit of detection was 5.0 x 10(-7) M. The electrode had a fast response time of 10 s and can be used for more than 3 months. The selective coefficients were determined by the fixed interference method and could be used in the pH range of 4.0 to 10.5. The electrode was employed as an indicator electrode for direct determination of salicylate in pharmaceutical and biological samples.  相似文献   

14.
A potentiometric procedure for cysteine thiol group concentration monitoring in media generating free radicals was developed using a thiol specific silver-mercury electrode. Electrolytic deposition of mercury on a silver wire and treatment with 20 mM cysteine in 0.5 M NaOH were used to produce the electrode. A silver-chloride electrode in saturated KCl was the reference. A glass capillary with 1 M KNO3 in 1% agarose gel was the liquid junction. The electrode responded to cysteine concentration in the range from 0.01 to 20 mM yielding a perfect linear relationship for the dependence of log [cysteine] versus electrode potential [mV], with b0 (constant) = -373.43 [mV], b1 (slope) = -53.82 and correlation coefficient r2 = 0.97. The electrode potential change per decade of cysteine concentration was 57 mV. The minimal measurable signal response was at a cysteine concentration of 0.01 mM. The signal CV amounted to 4-6% for cysteine concentrations of 0.01 to 0.05 mM and to less than 1% for cysteine concentrations of 0.5 to 20 mM. The response time ranged from about 100 s for cysteine concentrations of 0.01 to 0.1 mM to 30 s at higher cysteine concentrations. The standard curve reproducibility was the best at cysteine concentrations from 0.1 to 20 mM. In a reaction medium containing cysteine and copper(II)-histidine complex ([His-Cu]2+) solution in 55 mM phosphate buffer pH 7.4 the electrode adequately responded to changes in cysteine concentration. Beside cysteine, the silver-mercury electrode responded also to thiol groups of homocysteine and glutathione, however, the Nernst equation slope was about half of that for cysteine.  相似文献   

15.
Shi L  Liu X  Niu W  Li H  Han S  Chen J  Xu G 《Biosensors & bioelectronics》2009,24(5):1159-1163
Single-walled carbon nanohorns (SWCNHs) were used as a novel and biocompatible matrix for fabricating biosensing devices. The direct immobilization of acid-stable and thermostable soybean peroxidase (SBP) on SWCNH modified electrode surface can realize the direct electrochemistry of enzyme. Cyclic voltammogram of the adsorbed SBP displays a pair of redox peaks with a formal potential of -0.24 V in pH 5 phosphate buffer solution. The formal potential has a linear relationship with pH from 3 to 9 with a slope of -48.7 mV/pH, close to the value of -55.7 mV/pH expected at 18 degrees C for the reversible transfer of one proton and one electron. Bioactivity of SBP remains good in SWCNH microenvironment, along with effective catalysis of the reduction of H(2)O(2). In the absence of a mediator, this H(2)O(2) biosensor exhibited a high sensitivity (16.625 microAL/mmol), a linear range from 0.02 to 1.2 mmolL(-1), and a detection limit of 5.0 x 10(-7) mmolL(-1), as well as acceptable preparation reproducibility and excellent stability.  相似文献   

16.
A potentiometric enzyme electrode for the direct measurement of organophosphate (OP) nerve agents was developed. The basic element of this enzyme electrode was a pH electrode modified with an immobilized organophosphorus hydrolase (OPH) layer formed by cross-linking OPH with bovine serum albumin (BSA) and glutaradehyde. OPH catalyses the hydrolysis of organophosphorus pesticides to release protons, the concentration of which is proportional to the amount of hydrolysed substrate. The sensor signal and response time was optimized with respect to the buffer pH, ionic concentration of buffer, temperature, and units of OPH immobilized using paraoxon as substrate. The best sensitivity and response time were obtained using a sensor constructed with 500 IU of OPH and operating in pH 8.5, 1 mM HEPES buffer. Using these conditions, the biosensor was used to measure as low as 2 microM of paraoxon, ethyl parathion, methyl parathion and diazinon. The biosensor was completely stable for at least one month when stored in pH 8.5, 1 mM HEPES + 100 mM NaCl buffer at 4 degrees C.  相似文献   

17.
The direct electrochemistry of glucose oxidase (GOD) adsorbed on a colloidal gold modified carbon paste electrode was investigated. The adsorbed GOD displayed a pair of redox peaks with a formal potential of -(449+/-1) mV in 0.1 M pH 5.0 phosphate buffer solution. The response showed a surface-controlled electrode process with an electron transfer rate constant of (38.9+/-5.3)/s determined in the scan rate range from 10 to 100 mV/s. GOD adsorbed on gold colloid nanoparticles maintained its bioactivity and stability. The immobilized GOD could electrocatalyze the reduction of dissolved oxygen and resulted in a great increase of the reduction peak current. Upon the addition of glucose, the reduction peak current decreased, which could be used for glucose detection with a high sensitivity (8.4 microA/mM), a linear range from 0.04 to 0.28 mM and a detection limit of 0.01 mM at a signal-to-noise ratio of 3sigma. The sensor could exclude the interference of commonly coexisted uric and ascorbic acid.  相似文献   

18.
The polyaniline (PANi)-Nafion composite film was prepared onto the ceramic plate by the cyclic voltammetry (CV) method with the various cycle numbers. When the PANi-Nafion/Au/ceramic plate with the preparing cycle number of 5 was as working electrode, the cathodic peak current was achieved as 84.0 microA in 60 mg dl(-1) NH4Cl buffer solution. On the other hand, the small cathodic peak currents for buffer solution in the presence of 60 mg dl(-1) LiOH, NaCl and KCl, respectively, were found with the same composite electrode as working electrode. The cathodic peak current decreased from 84.0 to 16.3 microA in the 60 mg dl(-1) NH4Cl buffer solution when the cycle number for preparing PANi-Nafion/Au/ceramic plate composite electrode with the CV method increased from 5 to 15. The enzyme of urease was immobilized onto the PANi-Nafion/Au/ceramic plate composite film by the electrochemical immobilization and the casting methods and used as sensing electrode to detect the concentration of urea in the buffer solution. The sensitivity of composite electrode immobilized with the casting method was greater than that of electrochemical immobilization method. The sensitivity and the detecting limit of the urea sensor were found to be 0.7 and 5.27 microA (mg dl(-1))(-1)cm(-2), as well as 6 and 0.3 mg dl(-1), respectively, when urease was immobilized by glutaraldehyde (GA) cross-linker and Nafion network, respectively.  相似文献   

19.
An anion sensitive electrode has been constructed with the use of the lipid soluble cation benzyl-dimethyl-hexadecylammonium analogous to the procedure described for tetraphenylphosphonium-sensitive electrodes [Shinbo, T., Kamo, N., Kurihara, K. and Kobatake, Y. (1978) Arch. Biochem. Biophys. 187, 414-422]. The anion electrode responds to salicylate concentrations above 400 microM with a Nernstian sensitivity. Less lipid soluble anions like chloride and phosphate do not interfere. Below 400 microM salicylate the response of the electrode decreases gradually so that the sensitivity of the electrode is less than 10 mV per decade change at concentrations of the anion of 50 microM. A computer program has been developed to fit the electrode response curve with a polynomal function of the fourth power. Additional software-allows calculation of changes in the concentration of the salicylate anion, also under conditions where the sensitivity of the electrode for the anion is not constant. In this way the electrode can be used to measure changes in salicylate concentration that occur in a suspension of bacteria when, upon energization, a pH gradient is generated. 31P nuclear magnetic resonance measurements demonstrated that the pH gradient measured with the salicylate-sensitive electrode in the phototrophic bacterium Rhodopseudomonas sphaeroides is quantitatively correct. The response time of the electrode decreases from 1 min at 20 microM salicylate to 10 s at concentrations greater than or equal to 200 microM.  相似文献   

20.
A urea biosensor was developed using the urease entrapped in polyvinyl alcohol (PVA) and polyacrylamide (PAA) composite polymer membrane. The membrane was prepared on the cheesecloth support by gamma-irradiation induced free radical polymerization. The performance of the biosensor was monitored using a flow-through cell, where the membrane was kept in conjugation with the ammonia selective electrode and urea was added as substrate in phosphate buffer medium. The ammonia produced as a result of enzymatic reaction was monitored potentiometrically. The potential of the system was amplified using an electronic circuit incorporating operational amplifiers. Automated data acquisition was carried by connecting the output to a 12-bit analog to digital converter card. The sensor working range was 1–1000 mM urea with a response time of 120 s. The enzyme membranes could be reused 8 times with more than 90% accuracy. The biosensor was tested for blood urea nitrogen (BUN) estimation in clinical serum samples. The biosensor showed good correlation with commercial Infinity™ BUN reagent method using a clinical chemistry autoanalyzer. The membranes could be preserved in phosphate buffer containing dithiothreitol, β-mercaptoethanol and glycerol for a period of two months without significant loss of enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号