首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The measured response of rapid biochemical oxygen demand (BOD) biosensors is often not identical to those measured using the conventional 5-day BOD assay. This paper highlights the efficacy of using both glucose–glutamic acid (GGA) and Organisation for Economic Cooperation and Development (OECD) BOD standards as a rapid screen for microorganisms most likely to reliably predict real effluent BODs when used in rapid BOD devices. Using these two synthetic BOD standards, a microorganism was identified that produced comparable BOD response profiles for two assays, the MICREDOX® assay and the conventional 5-day BOD5 test. A factorial experimental design systematically evaluated the impact of four factors (microbial strain, growth media composition, media strength, and microbial growth phase) on the BOD response profiles using GGA and OECD synthetic standard substrates. An outlier was identified that showed an improved correlation between the MICREDOX® BOD (BODsens) and BOD5 assays for both the synthetic standards and for real wastewater samples. Microbial strain was the dominant factor influencing BODsens values, with Arthrobacter globiformis single cultures clearly demonstrating superior rapid BODsens response profiles for both synthetic and real waste samples. It was the only microorganism to approach the BOD5 response for the OECD substrate (171 mg O2?L?1), and also reported BOD values for real waste samples that were comparable to those produced by the BOD5 test, including discriminating between filtered and unfiltered samples.  相似文献   

2.
The biochemical oxygen demand (BOD) test (BOD5) is a crucial environmental index for monitoring organic pollutants in waste water but is limited by the 5-day requirement for completing the test. We have optimised a rapid microbial technique for measuring the BOD of a standard BOD5 substrate (150 mg glucose/l, 150 mg glutamic acid/l) by quantifying an equivalent biochemical mediator demand in the absence of oxygen. Elevated concentrations of Escherichia coli were incubated with an excess of redox mediator, potassium hexacyanoferrate(III), and a known substrate for 1 h at 37 °C without oxygen. The addition of substrate increased the respiratory activity of the microorganisms and the accumulation of reduced mediator; the mediator was subsequently re-oxidised at a working electrode generating a current quantifiable by a coulometric transducer. Catabolic conversion efficiencies exceeding 75% were observed for the oxidation of the standard substrate. The inclusion of a mediator allowed a higher co-substrate concentration compared to oxygen and substantially reduced the incubation time from 5 days to 1 h. The technique replicates the traditional BOD5 method, except that a mediator is substituted for oxygen, and we aim to apply the principle to measure the BOD of real waste streams in future work. Received: 2 August 1999 / Received revision: 6 December 1999 / Accepted: 12 December 1999  相似文献   

3.
Low dissolved oxygen (DO) levels often occur during summer in tidal creeks along the southeastern coast of the USA. We analyzed rates of oxygen loss as water-column biochemical oxygen demand (BOD5) and sediment oxygen flux (SOF) at selected tidal creek sites monthly over a 1-year period. Ancillary physical, chemical and biological data were collected to identify factors related to oxygen loss. BOD5 rates ranged from 0.0 mg l?1 to 7.6 mg l?1 and were correlated positively with organic suspended solids, total suspended solids, chlorophyll a concentrations, temperature, and dissolved oxygen, and negatively with pH and nitrate + nitrite. SOF rates ranged from 0.0 to 9.3 g O2 m?2 d?1, and were positively correlated with temperature, chlorophyll a, and total suspended solids, but negatively with dissolved oxygen. Both forms of oxygen uptake were seasonally dependent, with BOD5 elevated in spring and summer and SOF elevated in summer and fall. Average oxygen loss to sediments was greater and more variable than oxygen loss in the water column. Oxygen deficits at three of five locations were significantly related to BOD5 and SOF, but not at two sites where ground water discharges were observed. Correlation and principal component analyses suggested that BOD5 and SOF responded to somewhat different suites of environmental variables. BOD5 was driven by a set of parameters linked to warm season storm water inputs that stimulated organic seston loads, especially chlorophyll a, while SOF behaved less strongly so. Runoff processes that increase loads of organic material and nutrients and ground water discharges low in dissolved oxygen contribute to occurrences of low dissolved oxygen in tidal creeks.  相似文献   

4.
The biochemical oxygen demand (BOD) determination was studied using a novel flow injection analysis (FIA) system with encapsulated Saccharomyces cerevisiae cells and an oxygen electrode and was compared with conventional 5-day BOD tests. S. cerevisiae cells were packed in a calcium alginate capsule at a dry cell weight of 250 g/l of capsule core. The level of dissolved oxygen (DO) was reduced due to the enhanced respiratory activity of the microbial cells when the injected nutrient passed through the bioreactor. The decrease in DO (ΔDO) was intensified with the amount of microbial cells packed in the bioreactor. However, the specific ΔDO decreased as the amount of cells loaded in the bioreactor increased. The ΔDO value was dependent on the pH and temperature of the mobile phase and reached its maximum value at 35°C and pH 7–8. Also, ΔDO became larger at longer response times as the flow rate of the mobile phase decreased. The measurement of ΔDO was repeated more than six times consecutively using a 20-ppm standard glucose and glutamic acid solution, which confirmed the reproducibility with a standard deviation of 0.95%. A strong linear correlation between ΔDO and BOD was also observed. The 5-day BOD values of actual water and wastewater samples were in accordance with the BOD values obtained by this FIA method using encapsulated S. cerevisiae cells. Unlike the cell-immobilized bead system, there was no contamination of the bioreactor resulting from any leak of yeast cells from the sensor capsules during BOD measurements.  相似文献   

5.
The use of activated sludge (AS) to assess the environmental impact of chemicals and wastewaters suffers from several drawbacks related to the heterogeneity, absence of standardization and health risk associated with such a mixed sewage population. To search for reliable testing inoculum alternatives, the potential of a standardized soil inoculum and a pure culture (Pseudomonas sp.), as reference material in a 5-day BOD test, was evaluated using the dilution and manometric methods and testing the standard glucose-glutamic acid solution. The results obtained for the BOD5 of the standard solution fall in the range referred for the AS in the standards of the cited methods, demonstrating the potential of these inocula as an alternative to AS in the BOD5 test. Moreover, testing on real wastewater samples showed highly significant correlations (P < 0.001) between the BOD5 values obtained with these two inocula and with the standard inoculum. Analysis of metabolic patterns also pointed to a similar catabolic profile between soil inoculum and AS and to the potential of a mixed Pseudomonas-soil inoculum as an AS surrogate culture.  相似文献   

6.
A simple, and effective tool to measure BOD with a 98% correlation to theoretical BOD values has been developed using a technique of continuous short term measurements of O2 consumption rates. Measurement times are in the range of 5 to 10 h depending on the initial BOD, instead of 5 days required in the conventional BOD5 analysis. A bioreactor containing calcium alginate entrapped activated sludge microorganisms was used with phenol and hydroxybutyric acid (HBA) as model substrates.  相似文献   

7.
The rapid determination of waste-water quality of waste-water treatment plants in terms of pollutional strength, i.e. biochemical oxygen demand (BOD) is difficult or even impossible using the chemical determination method. The present study reports the determination of BOD within minutes using microbial BOD sensors, as compared to the 5-day determination using the conventional method. Multiple criteria establish the basis for the development of a BOD biosensor useful for rapid and reliable BOD estimation in industrial waste-waters. Of these, preparation of a suitable novel immobilized microbial membrane used in conjunction with an apt transducer is discussed. As a result, a microbial biosensor based on a formulated, synergistic, pre-tested microbial consortium has been developed for the measurement of BOD load of various industrial waste-waters. The sensor showed maximum response in terms of current difference, when a cell concentration of 2.25 x 10(10) CFU, harvested in their log phase of growth were utilized for microbial membrane construction. The sensor showed a stability of 180 days when the prepared membranes were stored at a temperature of 4 degrees C in 50 mM phosphate buffer of pH 6.8. The reusability of the immobilized membranes was up to 200 cycles without appreciable loss of their response characteristics. A linear relationship between the current change and a glucose-glutamic acid (GAA) concentration up to 60 mg l(-1) was observed (r=0.999). The lower detection limit was 1.0 mg l(-1) BOD. The sensor response was reproducible within +/-5% of the mean in a series of ten samples having 44 mg l(-1) BOD using standard a GGA solution. When used for the BOD estimation of industrial waste-waters, a relatively good agreement was found between the two methods, i.e. 5-day BOD and that measured by the developed microbial sensor.  相似文献   

8.
In this study, we investigated the relationship between environmental parameters (water and sediment) and benthic foraminiferal assemblages found in nearshore siliciclastic sediment in the Arabian Gulf. Nearshore marine water and sediment samples were collected from a beach on the Gulf of Bahrain located south of Al Khobar, Saudi Arabia. The water samples were analyzed for biochemical oxygen demand (BOD5) and other chemical analyses. The sediment samples were tested for sediment oxygen demand (SOD) and heavy metal analysis. Results showed the BOD5 levels were below the detection limit (<1 ppm), while the mean SOD value was 0.97 ± 0.08 g/m2·day. The water and sediments were unpolluted and free of eutrophic enrichment, while the sediment was anoxic. The two most common genera in the benthic foraminiferal assemblage, Ammonia and Elphidium, are typical of shallow water sandy substrates. This is the first reported comparison between SOD and benthic foraminiferal assemblages.  相似文献   

9.
A new analytical approach utilizing a biofilm reactor (BFR) for rapid online determination of biochemical oxygen demand (BOD) was proposed and experimentally validated. The BFR was fabricated via a cultivation process using naturally occurring microbial seeds from locally collected wastewaters. The resultant BFR displays a remarkable rate of biodegradation towards a wide spectrum of organic substrates, capable of degrading over 20% of biodegradable organic substrates within 100 s. More importantly, the BFR exhibits a superior indiscriminative biodegradation feature, enabling a precise prediction of BOD values of total biodegradable organics based on experimentally determined BOD values from partial degradation processes without a need for on-going calibration. The proposed approach was systematically validated using a range of individual organic substrates, their mixtures, synthetic samples and wastewaters. Highly significant linear correlations between the BFR and the standard BOD(5) methods were obtained from diversified synthetic samples (r=0.988, p=0.000, n=45) and wastewaters (r=0.983, p=0.000, n=40). Near unity slope values of the principal axis of the correlation ellipse were obtained from all tested samples, suggesting both methods were essentially measuring the same BOD value. The reported method could be a useful online monitoring tool for determination of biodegradable organic pollutants.  相似文献   

10.
Disposable sensor for biochemical oxygen demand   总被引:6,自引:0,他引:6  
 Disposable-type microbial sensors were prepared for the determination of biochemical oxygen demand (BOD). The yeast, Trichosporon cutaneum, was directly immobilized on the surface of miniature oxygen electrodes using an ultraviolet crosslinking resin (ENT-3400). The oxygen electrodes (15 mm× 2 mm×0.4 mm) were made on silicon substrates using micromachining techniques. They were Clark-type two-electrode systems with−1021 mV applied to the working electrode. Typical response times of the BOD sensors were in the range of 7–20 min. At 20°C, the sensors’ dynamic range was from 0 to 18 mg/l BOD when a glucose/glutamate BOD standard solution was used. The lower limit of detection was 0.2 mg/l BOD. This value was one order of magnitude lower than that of sensors previously reported. The sensors’ operational lifetime of 3 days was satisfactory for a disposable type. The sensors’ responses were reproducible to within 8% relative standard deviation. The BOD sensors’ were applied to untreated and treated waste waters from industrial effluents and municipal sewage. BOD values determined using these sensors correlated well with those determined by the conventional 5-day BOD determination method. Received: 22 December 1995/Received revision: 19 February 1996/Accepted: 17 March 1996  相似文献   

11.
An attempt is made to validate the use of a microbial consortium in BOD analysis. A uniform dehydrated microbial consortium, `BODSEED', has been used as a seeding material in BOD analysis of synthetic and other industrial effluents. Statistical analysis of the obtained BOD values shows that conventional seeding material such as sewage can be replaced by `BODSEED'.  相似文献   

12.
This study investigated three lab-scale hybrid wetland systems with traditional (gravel) and alternative substrates (wood mulch and zeolite) for removing organic, inorganic pollutants and coliforms from a synthetic wastewater, in order to investigate the efficiency of alternative substrates, and monitor the stability of system performance. The hybrid systems were operated under controlled variations of hydraulic load (q, 0.3-0.9 m3/m2 d), influent ammoniacal nitrogen (NH4-N, 22.0-80.0 mg/L), total nitrogen (TN, 24.0-84.0 mg/L) and biodegradable organics concentration (BOD5, 14.5-102.0 mg/L). Overall, mulch and zeolite showed promising prospect as wetland substrates, as both media enhanced the removal of nitrogen and organics. Average NH4-N, TN and BOD5 removal percentages were over 99%, 72% and 97%, respectively, across all three systems, indicating stable removal performances regardless of variable operating conditions. Higher Escherichia coli removal efficiencies (99.9%) were observed across the three systems, probably due to dominancy of aerobic conditions in vertical wetland columns of the hybrid systems.  相似文献   

13.
Amperometric estimation of BOD by using living immobilized yeasts   总被引:4,自引:0,他引:4  
Summary A microbial electrode consisting of immobilized living whole cells of yeasts, porous membrane and an oxygen electrode was prepared for continuous estimation of biochemical oxygen demand (BOD). Immobilized Trichosporon cutaneum was employed for the microbial electrode sensor for BOD. When a sample solution containing the equivalent amount of glucose and glutamic acid was injected into the sensor system, the current of the electrode decreased markedly with time until steady state was reached. The response time was within 18 min. A linear relationship was observed between the current decrease and the concentration below 41 mg l of glucose and 41 mg l glutamic acid (5-day BOD 60 mg l ). The current decrease was reproducible within ± 6% of the relative error when a sample solution containing 27 mg l of glucose and 27 mg l of glutamic acid (5-day BOD 40 mg l ) was employed. The microbial electrode sensor was applied to untreated waste waters from a fermentation factory. Good comparative results were obtained between BOD estimated by the microbial electrode and that determined by the conventional 5-day method (regression coefficient was 1.2). Furthermore, the effect of various compounds on BOD estimation was also examined. The current output of the microbial electrode sensor was almost constant for 17 d and 400 tests.  相似文献   

14.
生化需氧量(Biochemical oxygen demand,BOD)微生物传感器是一种快速检测水样中有机污染物含量的设备,固定化微生物是其核心部件之一,对其稳定性、响应时间、使用寿命及实际应用范围等性能有着重要影响。生物膜式BOD传感器较其他类型的BOD微生物传感器具有结构简单、灵敏度高、响应时间短等优点,受到广泛的研究和应用。本文主要针对固定化微生物在生物膜式BOD传感器中的应用情况,概述较典型的微生物固定化方式的原理、特点及应用;总结几类应用较多或具有较好前景的载体材料,并讨论载体特性与传感器性能之间的关系;综述微生物在该领域的应用现状;简要介绍生物膜式BOD传感器的实际应用及商业化现状,比较其与另外几种BOD微生物传感器的优缺点;分析生物膜式BOD传感器中固定化微生物现存的一些问题及其发展趋势。  相似文献   

15.
An unusually high hypolimnetic water column BOD (WCBOD), roughly 40 times higher than the sediment oxygen demand (SOD), was observed in a small eutrophic lake and an adjoining lagoon. The mean 5-day WCBOD during thermal stratification in the lake was 29 and 49 g/m2 at 10 and 20 °C, respectively, while in the lagoon it was even higher (47 and 87 g/m2 at 10 and 20 °C, respectively). The soluble fraction comprised about two-thirds of the WCBOD. WCBOD in the lake was much less during the unstratified period (5-day = 5 g/m2). The SOD rates at two depths in both the lake (0.31 and 0.2 g/m2-d) and lagoon (0.41 and 0.28 g/m2-d) were not unusually high. The ultimate whole BOD (UWCBOD + USOD) was approximately 96 g/m2 in the lake and 136 g/m2 in the lagoon and UWCBOD formed over 90% of the ultimate whole BOD in both water bodies. A possible cause for these abnormally high WCBODs, in addition to the normal autochthonous production, is an allochthonous source from loosely aggregated and flocculant mats of the bog moss, Sphagnum, which surrounds the lake-lagoon system. Storm water per se was clearly insignificant, but would have contributed indirectly through nutrients for autochthonous production. Such high short-term BOD rates may greatly over-estimate the demand to be satisfied by continuous aeration.  相似文献   

16.
The operation of tidal flow was studied using a pilot‐scale system treating high strength piggery wastewater. Located on a farm in Staffordshire, UK, the system consisted of five wetland treatment stages vegetated with common reeds of Phragmites australis. Wastewater samples were collected from the inlet and outlet of each stage and analyzed for BOD5, COD, NH4‐N, NO3‐N, NO2‐N, SS, PO4‐P and pH. Average hydraulic and organic loadings on the system were 0.12 m3/m2 d and 240 g BOD/m2 d, respectively, which is considerably higher than the typical loadings on conventional subsurface flow systems. On average, BOD5 and COD were reduced by 82 % and 80 % from initial concentrations of 2000 mg/L and 2750 mg/L, respectively, across the whole system. The first‐order kinetics constant for BOD5 removal (KBOD in m/d) in this tidal flow system is approximately 2.5 times the rate constant obtainable in a typical horizontal flow system, demonstrating a more efficient removal of organic matter in tidal flow wetlands. The overall efficiency of the system was found to increase with time before stabilizing towards the end of a start‐up period. Straight‐line correlations were established between the loading and removal of BOD5 and COD. Contributions by individual stages to the overall treatment were analyzed. SEM images of wetland media demonstrated the formation of biofilms and microbial activities inside the matrices of the wetland system, which accounted for the degradations of organic pollutants.  相似文献   

17.
The review briefs recent advances in application of biosensors for determining biological oxygen demand (BOD) in water. Special attention is focused on the principles of operation of microbial BOD sensors; the information about biorecognition elements in such systems and the methods used for immobilization of biological components in film biosensors is summarized. Characteristics of some BOD sensor models are considered in detail.  相似文献   

18.
A microbial fuel cell type of biosensor was used to determine the biochemical oxygen demand (BOD) of wastewater. The biosensor gave a good correlation between the BOD value and the coulomb produced. The BOD sensor has been operated for over 5 years in a stable manner without any servicing. This is much longer that that of previously reported BOD biosensors.  相似文献   

19.
A surface water treatment system consisting of an aeration reservoir and pond (holding capacities 45,000 and 19,000 m3) and a network of 12 horizontal subsurface flow gravel-filled constructed wetland cells of different sizes (total surface area 2.08 ha) and planted with Phragmites australis, was commissioned at Heathrow Airport, London, United Kingdom, in the winter of 2002. Ongoing monitoring of the treatment system has shown significant reductions in the biochemical oxygen demand (BOD5) throughout the system with levels decreasing by up to 76.7% across the constructed wetland cells following high anti- and de-icing fluid applications. However, continued exposure to BOD5 concentrations exceeding the design target has resulted in anaerobic conditions in the wetland. The addition of nutrients to the treatment system has resulted in improved removal efficiency for elevated BOD5 loadings in the aerated reservoir from 25.5% to 47.5%, The addition of different nutrient dosing regimes to complementary pilot-scale planted and unplanted vertical flow columns showed average but statistically insignificant BOD5 removal percentage increases from 61.9 ± 21.1% to 70.8 ± 26.5%, respectively, in planted columns over a 7-day period. There is an overall improvement in the performance of the system, but operational reviews are continuing.  相似文献   

20.
The results of microbiological analysis of a number of microorganisms of various ecological–trophic groups in plankton microbial communities of some water areas of the Sea of Okhotsk and Avacha Bay are presented. The data were compared to the hydrochemical parameters (temperature, salinity, BOD5, dissolved oxygen, phosphates, organic phosphate, detergents) determined simultaneously. The microbian indication method is used for express assessment of water pollution of the surveyed areas. The data demonstrated that Avacha Bay was subjected to heavier anthropogenic impact than the water areas of the ports of Kholmsk and Magadan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号