首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthetic gene cluster for tobramycin, a 2-deoxystreptamine-containing aminoglycoside antibiotic, was isolated from Streptomyces tenebrarius ATCC 17920. A genomic library of S. tenebrarius was constructed, and a cosmid, pST51, was isolated by the probes based on the core regions of 2-deoxy-scyllo-inosose (DOI) synthase, and L-glutamine:DOI aminotransferase and L-glutamine:scyllo-inosose aminotransferase. Sequencing of 33.9 kb revealed 24 open reading frames (ORFs) including putative tobramycin biosynthetic genes. We demonstrated that one of these ORFs, tbmA, encodes DOI synthase by in vitro enzyme assay of the purified protein. The catalytic residues of TbmA and dehydroquinate synthase were studied by homology modeling. The gene cluster found is likely to be involved in the biosynthesis of tobramycin.  相似文献   

2.
Aminoglycoside has been known as a clinically important antibiotic for a long time, but genetic information for the biosynthesis of aminoglycoside is still insufficient. In this study, we tried to clone aminoglycoside-biosynthetic genes from soil DNA for accumulation of genetic information. We chose the genes encoding L-glutamine:(2-deoxy-)scyllo-inosose aminotransferase as the target, because it is specific for all types of aminoglycoside biosynthesis. By degenerate PCR, we obtained 33 individual clones that were homologous with aminotransferase genes in aminoglycoside biosynthesis. Phylogenetic analysis and alignment of these genes showed that horizontal gene transfer has occurred in the soil. Among these, several quite interesting genes were obtained. Some genes probably originated from non-actinomycetes, and some were far from the known homologs. These genes can be useful markers for the isolation of entire gene clusters and originating organisms.  相似文献   

3.
2-Deoxy-scyllo-inosose (DOI) synthase is involved in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics and catalyzes the carbocyclic formation from d-glucose-6-phosphate (G-6-P) into DOI. The reaction mechanism is proposed to be similar to that of dehydroquinate (DHQ) synthase in the shikimate pathway, and includes oxidation of C-4, beta-elimination of phosphate, reduction of C-4, ring opening, and intramolecular aldol cyclization. To investigate the reaction mechanism of DOI synthase, site-directed mutational analysis of three presumable catalytically important amino acids of DOI synthase derived from the butirosin producer Bacillus circulans (BtrC) was carried out. Steady state and pre-steady state kinetic analysis suggested that E243 of BtrC is catalytically involved in the phosphate elimination step. Further analysis of the mutant E243Q of BtrC using substrate analogue, glucose-6-phosphonate, clearly confirmed that E243 was responsible to abstract a proton at C-5 in G-6-P and set off phosphate elimination. This glutamate residue is completely conserved in all DOI synthases identified so far and the corresponding amino acid of DHQ synthase is completely conserved as asparagine. Therefore, this characteristic glutamate residue of DOI synthase is a key determinant to distinguish the reaction mechanism between DOI synthase and DHQ synthase as well as primary sequence.  相似文献   

4.
Genes homologous to 2-deoxystreptamine (DOS) biosynthetic genes were isolated from aminoglycoside producers, Micromonospora and Streptomyces spp., using PCR primers based on the core sequences of 2-deoxy-scyllo-inosose (DOI) synthase and L-glutamine: scyllo-inosose aminotransferase (GIA). Identities of 40-45% were observed for DOI synthases, and 65-75% were observed for GIAs. The gene cluster of tobramycin biosynthesis was isolated from the genomic library of Streptomyces tenebrarius using DOI synthase as a probe. Sequencing of 33.9 kb revealed 24 putative open reading frames including the tobramycin biosynthetic gene cluster (13.8 kb) and a transport protein. This cluster encodes proteins homologous to 2-deoxystreptamine biosynthetic enzymes, glycosyltransferase and other aminocyclitols biosynthetic enzymes. Sequence analysis revealed the evolution of DOI synthases from 3-dehydroquinate (DHQ) synthases in actinomycetes. DOI synthases and GIA are therefore useful for cloning biosynthetic genes of DOS-containing aminocyclitol antibiotics or for screening such metabolites producers.  相似文献   

5.
A gene (btrC2) encoding the 20-kDa subunit of 2-deoxy-scyllo-inosose (DOI) synthase, a key enzyme in the biosynthesis of 2-deoxystreptamine, was identified from the butirosin-producer Bacillus circulans by reverse genetics. The deduced amino acid sequence of BtrC2 closely resembled that of YaaE of B. subtilis, but the function of the latter has not been known to date. Instead, BtrC2 appeared to show sequence similarity to a certain extent with HisH of B. subtilis, an amidotransferase subunit of imidazole glycerol phosphate synthase. Disruption of btrC2 reduced the growth rate compared with the wild type, and simultaneously antibiotic producing activity was lost. Addition of NH4Cl to the medium complemented only the growth rate of the disruptant, and both the growth rate and antibiotic production were restored by addition of yeast extract. In addition, a heterologous co-expression system of btrC2 with btrC was constructed in Escherichia coli. The simultaneously over-expressed BtrC2 and BtrC constituted a heterodimer, the biochemical features of which resembled those of DOI synthase from B. circulans more than those of the recombinant homodimeric BtrC. Despite the similarity of BtrC2 to HisH the heterodimer showed neither aminotransfer nor amidotransfer activity for 2-deoxy-scyllo-inosose as a substrate. All the observations suggest that BtrC2 is involved not only in the secondary metabolism, but also in the primary metabolism in B. circulans. The function of BtrC2 in the butirosin biosynthesis appears to be indirect, and may be involved in stabilization of DOI synthase and in regulation of its enzyme activity.  相似文献   

6.
Owing to their photosynthetic capabilities, there is increasing interest in utilizing cyanobacteria to convert solar energy into biomass. 2-Deoxy-scyllo-inosose (DOI) is a valuable starting material for the benzene-free synthesis of catechol and other benzenoids. DOI synthase (DOIS) is responsible for the formation of DOI from d-glucose-6-phosphate (G6P) in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics such as neomycin and butirosin. DOI fermentation using a recombinant Escherichia coli strain has been reported, although a carbon source is necessary for high-yield DOI production. We constructed DOI-producing cyanobacteria toward carbon-free and sustainable DOI production. A DOIS gene derived from the butirosin producer strain Bacillus circulans (btrC) was introduced and expressed in the cyanobacterium Synechococcus elongatus PCC 7942. We ultimately succeeded in producing 400 mg/L of DOI in S. elongatus without using a carbon source. DOI production by cyanobacteria represents a novel and efficient approach for producing benzenoids from G6P synthesized by photosynthesis.  相似文献   

7.
A cluster of genes for ribostamycin (Rbm) biosynthesis was isolated from Streptomyces ribosidificus ATCC 21294. Sequencing of 31.892 kb of the genomic DNA of S. ribosidificus revealed 26 open reading frames (ORFs) encoding putative Rbm biosynthetic genes as well as resistance and other genes. One of ten putative Rbm biosynthetic genes, rbmA, was expressed in S. lividans TK24, and shown to encode 2-deoxy-scyllo-inosose (DOI) synthase. Acetylation of various aminoglycoside-aminocyclitol (AmAcs) by RbmI confirmed it to be an aminoglycoside 3-N-acetyltransferase. Comparison of the genetic control of ribostamycin and butirosin biosynthesis pointed to a common biosynthetic route for these compounds, despite the considerable differences between them in genetic organization.  相似文献   

8.
Methanopterin is a folate analog involved in the C1 metabolism of methanogenic archaea, sulfate-reducing archaea, and methylotrophic bacteria. Although a pathway for methanopterin biosynthesis has been described in methanogens, little is known about the enzymes and genes involved in the biosynthetic pathway. The enzyme beta-ribofuranosylaminobenzene 5'-phosphate synthase (beta-RFAP synthase) catalyzes the first unique step to be identified in the pathway of methanopterin biosynthesis, namely, the condensation of p-aminobenzoic acid with phosphoribosylpyrophosphate to form beta-RFAP, CO2, and inorganic pyrophosphate. The enzyme catalyzing this reaction has not been purified to homogeneity, and the gene encoding beta-RFAP synthase has not yet been identified. In the present work, we report on the purification to homogeneity of beta-RFAP synthase. The enzyme was purified from the methane-producing archaeon Methanosarcina thermophila, and the N-terminal sequence of the protein was used to identify corresponding genes from several archaea, including the methanogen Methanococcus jannaschii and the sulfate-reducing archaeon Archaeoglobus fulgidus. The putative beta-RFAP synthase gene from A. fulgidus was expressed in Escherichia coli, and the enzymatic activity of the recombinant gene product was verified. A BLAST search using the deduced amino acid sequence of the beta-RFAP synthase gene identified homologs in additional archaea and in a gene cluster required for C1 metabolism by the bacterium Methylobacterium extorquens. The identification of a gene encoding a potential beta-RFAP synthase in M. extorquens is the first report of a putative methanopterin biosynthetic gene found in the Bacteria and provides evidence that the pathways of methanopterin biosynthesis in Bacteria and Archaea are similar.  相似文献   

9.
The biosynthetic gene cluster for bluensomycin, a member of the aminoglycoside family of antibiotics, was isolated and characterized from the bluensomycin producing strain, Streptomyces bluensis ATCC27420. PCR primers were designed specifically to amplify a segment of the dTDP-glucose synthase gene based on its conserved sequences among several actinomycete strains. By screening a cosmid library using amplified PCR fragments, a 30-kb DNA fragment was isolated. Sequence analysis identified 15 open reading frames (ORFs), eight of which had previously been identified by Piepersberg et al. But seven are novel to this study. We demonstrated that one of these ORFs, blmA, confers resistance against the antibiotic dihydrostreptomycin, and another, blmD, encodes a dTDP-glucose synthase. These findings suggest that the isolated gene cluster is very likely to be responsible for the biosynthesis of bluensomycin.  相似文献   

10.
2-Deoxy-scyllo-inosose (DOI) is a six-membered carbocycle formed from d-glucose-6-phosphate catalyzed by 2-deoxy-scyllo-inosose synthase (DOIS), a key enzyme in the biosynthesis of 2-deoxystreptamine-containing aminocyclitol antibiotics. DOI is valuable as a starting material for the benzene-free synthesis of catechol and other benzenoids. We constructed a series of metabolically engineered Escherichia coli strains by introducing a DOIS gene (btrC) from Bacillus circulans and disrupting genes for phosphoglucose isomerase, d-glucose-6-phosphate dehydrogenase, and phosphoglucomutase (pgi, zwf and pgm, respectively). It was found that deletion of the pgi gene, pgi and zwf genes, pgi and pgm genes, or all pgi, zwf and pgm genes significantly improved DOI production by recombinant E. coli in 2YTG medium (3% glucose) up to 7.4, 6.1, 11.6, and 8.4 g l(-1), respectively, compared with that achieved by wild-type recombinant E. coli (1.5 g l(-1)). Moreover, E. coli mutants with disrupted pgi, zwf and pgm genes showed strongly enhanced DOI productivity of up to 29.5 g l(-1) (99% yield) in the presence of mannitol as a supplemental carbon source. These results demonstrated that DOI production by metabolically engineered recombinant E. coli may provide a novel, efficient approach to the production of benzenoids from renewable d-glucose.  相似文献   

11.
12.
Hydroxy‐methylglutaryl coenzyme‐A synthase (HMGS) is a rate‐limiting enzyme in the cytoplasmic isoprenoid biosynthesis pathway leading to natural rubber production in Hevea brasiliensis (rubber). Analysis of the structural variants of this gene is imperative to understand their functional significance in rubber biosynthesis so that they can be properly utilised for ongoing crop improvement programmes in Hevea. We report here allele richness and diversity of the HMGS gene in selected popular rubber clones. Haplotypes consisting of single nucleotide polymorphisms (SNPs) from the coding and non‐coding regions with a high degree of heterozygosity were identified. Segregation and linkage disequilibrium analysis confirmed that recombination is the major contributor to the generation of allelic diversity, rather than point mutations. The evolutionarily conserved nature of some SNPs was identified by comparative DNA sequence analysis of HMGS orthologues from diverse taxa, demonstrating the molecular evolution of rubber biosynthesis genes in general. In silico three‐dimensional structural studies highlighting the structural positioning of non‐synonymous SNPs from different HMGS haplotypes revealed that the ligand‐binding site on the enzyme remains impervious to the reported sequence variations. In contrast, gene expression results indicated the possibility of association between specific haplotypes and HMGS expression in Hevea clones, which may have a downstream impact up to the level of rubber production. Moreover, haplotype diversity of the HMGS gene and its putative association with gene expression can be the basis for further genetic association studies in rubber. Furthermore, the data also show the role of SNPs in the evolution of candidate genes coding for functional traits in plants.  相似文献   

13.
We report the identification of a natural antisense mRNA of hyaluronan synthase 2 that we have chosen to designate as HASNT (for HA synthase 2 antisense) in human and mouse. HASNT is transcribed from the opposite strand of the HAS2 gene locus and is represented by several independent expressed sequence tags in human. Portions of the mouse Hasnt gene were identified through an exon-trapping approach. Sequence conservation is extremely low between human and mouse HASNT, and it is not clear whether these mRNAs contain functional open reading frames. HASNT has an alternate splice site in both human and mouse. This splice site is located at an identical position within the gene in both species and results in mRNAs of two different lengths. In each species, the antisense portion of the HASNT gene is complementary to the first exon of HAS2, which represents the 5'-untranslated region. To study the biological activity of HASNT, two human expressed sequence tag clones, representing long and short HASNT splice variants, were cloned into a tetracycline-inducible vector and were stably transfected into human osteosarcoma U2-OS Tet-on cells. The long and short HASNT-expressing cells had a reduction in HAS2 mRNA levels up to 94 and 86%, respectively, whereas hyaluronan biosynthesis was inhibited by 40 and 37%, respectively. Cell proliferation was reduced throughout the time frame of the experiment. Exogenous high molecular mass hyaluronan failed to rescue the suppressed cell proliferation, whereas adenoviral-mediated overexpression of hyaluronan synthase 3, which stimulated endogenous hyaluronan biosynthesis, was able to rescue. Collectively, our data suggest that natural antisense mRNAs of HAS2 are able to regulate HAS2 mRNA levels and hyaluronan biosynthesis in a cell culture model system and may have an important and novel regulatory role in the control of HAS2, HA biosynthesis, and HA-dependent cell functions in vivo.  相似文献   

14.
cDNA clones encoding limonene synthase and limonene-3-hydroxylase, both driven by the CaMV 35S promoter, were independently transformed into peppermint (Menthaxpiperita) to alter the production and disposition of (-)-limonene, the first committed intermediate of essential oil biosynthesis in this species. Although both genes were constitutively expressed in leaves of transformed plants, the corresponding enzyme activities were not significantly increased in the glandular trichome sites of essential oil biosynthesis; thus, there was no effect on oil yield or composition in the regenerated plants. Cosuppression of the hydroxylase gene, however, resulted in the accumulation of limonene (up to 80% of the essential oil compared to about 2% of the oil in wild type plants), without influence on oil yield. These results indicate that limonene does not impose negative feedback on the synthase, or apparently influence other enzymes of monoterpene biosynthesis in peppermint, and suggests that pathway engineering can be employed to significantly alter essential oil composition without adverse metabolic consequences.  相似文献   

15.
16.
T Romeo  J Moore  J Smith 《Gene》1991,108(1):23-29
A simple and widely applicable method for cloning genes involved in glucan biosynthesis is described. An Escherichia coli genomic library was prepared in the low-copy plasmid, pLG339, and E. coli transformants from this library were screened by staining with iodine vapor. Colonies that stained darker than the control were isolated and characterized. The three classes of clones that were identified included: (i) plasmids encoding E. coli glycogen biosynthetic (glg) structural genes, (ii) clones that resulted in elevated glycogen levels, but did not encode glg structural genes or enhance the level of the first enzyme of the pathway, ADPglucose pyrophosphorylase (AGPP), and (iii) clones that enhanced the level of AGPP, but did not encode this enzyme. Two clones from the latter class also enhanced glgC'-'lacZ-encoded beta-galactosidase activity, and may encode factors that regulate the expression of glg structural genes. It should be possible to readily clone glycogen biosynthetic genes from other bacterial species via this method. The method could be made specific for a desired glg gene by using a recipient strain that is defective in the gene of interest.  相似文献   

17.
Wu Y  Kang Q  Shen Y  Su W  Bai L 《Molecular bioSystems》2011,7(8):2459-2469
Naphthomycins (NATs) are 29-membered naphthalenic ansamacrolactam antibiotics with antimicrobial and antineoplastic activities. Their biosynthesis starts from 3-amino-5-hydroxy-benzoic acid (AHBA). By PCR amplification with primers for AHBA synthase and amino-dehydroquinate (aDHQ) synthase, a genomic region containing orthologs of these genes was identified in Streptomyces sp. CS. It was confirmed to be involved in naphthomycin biosynthesis by deletion of a large DNA fragment, resulting in abolishment of naphthomycin production. A 106 kb region was sequenced, and 32 complete ORFs were identified, including five polyketide synthase genes, eight genes for AHBA synthesis, and putative genes for modification, regulation, transport or resistance. Targeted inactivation and complementation experiments proved that the halogenase gene nat1 is responsible for the chlorination of C-30 of NATs. The nat1 mutant could also be complemented with asm12, the halogenase gene of ansamitocin biosynthesis. Likewise, an asm12 mutant could be complemented with nat1, suggesting a similar catalytic mechanism for both halogenases. A putative hydroxylase gene, nat2, was also inactivated, whereupon the biosynthesis of NATs was completely abolished with a tetraketide desacetyl-SY4b accumulated, indicating the participation of nat2 in the formation of the naphthalene ring. The information presented here expands our understanding of the biosynthesis of naphthalenic ansamycins, and may pave the way for engineering ansamacrolactams with improved pharmaceutical properties.  相似文献   

18.
Functional cross talk between fatty acid biosynthesis and secondary metabolism has been discovered in several cases in microorganisms; none of them, however, involves a modular biosynthetic enzyme. Previously, we reported a hybrid modular nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) pathway for the biosynthesis of FK228 anticancer depsipeptide in Chromobacterium violaceum strain 968. This pathway contains two PKS modules on the DepBC enzymes that lack a functional acyltransferase (AT) domain, and no apparent AT-encoding gene exists within the gene cluster or its vicinity. We report here that, through reconstitution of the FK228 biosynthetic pathway in Escherichia coli cells, two essential genes, fabD1 and fabD2, both encoding a putative malonyl coenzyme A (CoA) acyltransferase component of the fatty acid synthase complex, are positively identified to be involved in FK228 biosynthesis. Either gene product appears sufficient to complement the AT-less PKS modules on DepBC for polyketide chain elongation. Concurrently, a gene (sfp) encoding a putative Sfp-type phosphopantetheinyltransferase was identified to be necessary for FK228 biosynthesis as well. Most interestingly, engineered E. coli strains carrying variable genetic components produced significant levels of FK228 under both aerobic and anaerobic cultivation conditions. Discovery of the trans complementation of modular PKSs by housekeeping ATs reveals natural product biosynthesis diversity. Moreover, demonstration of anaerobic production of FK228 by an engineered facultative bacterial strain validates our effort toward the engineering of novel tumor-targeting bioagents.  相似文献   

19.
Ketol-acid reductoisomerase (EC 1.1.1.86) catalyzes the conversion of 2-aceto-2-hydroxyacids to 2-keto-3-hydroxyacids and their subsequent reduction by NADPH to 2,3-dihydroxyacids. The gene encoding the Escherichia coli enzyme was cloned and expressed as a hexahistidine-tagged fusion protein and the recombinant enzyme purified by metal-ligand affinity chromatography. The pure enzyme was tested for its ability to provide a sensitive and continuous coupled assay for acetohydroxyacid synthase (EC 4.1.3.18), the preceding enzyme in the pathway of branched-chain amino acid biosynthesis. An unexpected side reaction of ketol-acid reductoisomerase was observed in which it catalyzes the reduction of pyruvate. Although relatively slow, this side reaction is high enough to prohibit the use of this enzyme in a coupled assay for acetohydroxyacid synthase.  相似文献   

20.
The organization of the 2-deoxystreptamine (DOS) biosynthetic gene cluster of Micromonospora echinospora has been determined. Sequencing of a 14.04 kb-region revealed twelve open reading frames (ORFs): four putative DOS biosynthetic genes (gtmA, B, C, and D), five amino sugars biosynthetic genes (gtmE, G, H, I, and gacB), two aminoglycoside resistance genes (gtmF and J) as well as a hypothetical ORF (gacA). One of the putative DOS biosynthetic genes, gtmA, was expressed in Escherichia coli, and the purified protein was shown to convert glucose-6-phosphate (G-6-P) to 2-deoxy-scyllo-inosose (DOI), a key step in DOS biosynthesis. In addition gtmJ was expressed in Streptomyces lividans and shown to confer gentamicin resistance. Thus gtmA and gtmJ are implicated in the biosynthesis of gentamicin and in resistance to it, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号