首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) show signs of toxicity that are similar to the responses of animals to a vitamin A-deficient diet. These include hypophagia, loss of body weight, loss of hepatic vitamin A, and accumulation of renal retinoids. Male Sprague-Dawley rats treated with 10, 30, or 100 nmol/kg of TCDD accumulated renal vitamin A, with retinyl palmitate concentrations reaching 8 times those of control animals, similar to that of male rats fed a vitamin A-free diet for 26 days. Acyl CoA:retinol acyltransferase (ACARAT) activities in both TCDD-treated rats and rats fed a vitamin A-free diet for 26 days were similarly elevated, and were strongly and positively correlated with the renal retinyl palmitate concentrations. Retinol concentrations in the kidneys of rats treated with TCDD or fed a vitamin A-free diet were only slightly elevated when compared to control rats. We suggest that accumulation of retinyl esters in the kidneys of rats treated with TCDD or fed a vitamin A-free diet occurs as a result of increased rates of retinol esterification.  相似文献   

2.
Chronic dietary administration of 3,3′,4,4′,5,5′-hexabromobiphenyl (HBB), 1 mg/kg diet, caused a decrease in retinol (20-fold) and retinyl esters (23-fold) in the livers of female rats, but resulted in a 6.4-fold increase in retinol and 7.4-fold increase in retinyl esters in the kidneys. Liver acyl-CoA: retinol acyltransferase and retinyl palmitate hydrolase activities were reduced while serum concentration of retinol was unaffected by HBB feeding. Metabolism of a physiological dose of [11-3H]retinyl acetate (10 μg), was examined in rats fed either vitamin A-adequate diet, or marginal amounts of vitamin A, or vitamin A-adequate diet containing HBB. A 13-fold greater amount of the administered vitamin A was found in kidneys of HBB-treated rats. In rats fed adequate or low amounts of vitamin A, kidney radioactivity was primarily in the retinol fraction, while in HBB-fed rats the radioactivity was associated mostly with retinyl esters. Fecal and urinary excretion of radioactivity was greatly increased in HBB-treated rats. Chronic HBB feeding results in a loss of ability of liver to store vitamin A, and severely alters the uptake and metabolism of vitamin A in the kidneys. We conclude that HBB causes major disturbances in the regulation of vitamin A metabolism.  相似文献   

3.
Chronic dietary administration of 3,3',4,4',5,5'-hexabromobiphenyl (HBB), 1 mg/kg diet, caused a decrease in retinol (20-fold) and retinyl esters (23-fold) in the livers of female rats, but resulted in a 6.4-fold increase in retinol and 7.4-fold increase in retinyl esters in the kidneys. Liver acyl-CoA:retinol acyltransferase and retinyl palmitate hydrolase activities were reduced while serum concentration of retinol was unaffected by HBB feeding. Metabolism of a physiological dose of [11-3H]retinyl acetate (10 micrograms), was examined in rats fed either vitamin A-adequate diet, or marginal amounts of vitamin A, or vitamin A-adequate diet containing HBB. A 13-fold greater amount of the administered vitamin A was found in kidneys of HBB-treated rats. In rats fed adequate or low amounts of vitamin A, kidney radioactivity was primarily in the retinol fraction, while in HBB-fed rats the radioactivity was associated mostly with retinyl esters. Fecal and urinary excretion of radioactivity was greatly increased in HBB-treated rats. Chronic HBB feeding results in a loss of ability of liver to store vitamin A, and severely alters the uptake and metabolism of vitamin A in the kidneys. We conclude that HBB causes major disturbances in the regulation of vitamin A metabolism.  相似文献   

4.
Previous studies have shown that rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) show signs of toxicity that are similar to the responses of animals to a vitamin A-deficient diet. These include hypophagia, loss of body weight, loss of hepatic vitamin A, and accumulation of renal retinoids. Male Sprague-Dawley rats treated with 10, 30, or 100 nmol/kg of TCDD accumulated renal vitamin A, with retinyl palmitate concentrations reaching 8 times those of control animals, similar to that of male rats fed a vitamin A-free diet for 26 days. Acyl CoA:retinol acyltransferase (ACARAT) activities in both TCDD-treated rats and rats fed a vitamin A-free diet for 26 days were similarly elevated, and were strongly and positively correlated with the renal retinyl palmitate concentrations. Retinol concentrations in the kidneys of rats treated with TCDD or fed a vitamin A-free diet were only slightly elevated when compared to control rats. We suggest that accumulation of retinyl esters in the kidneys of rats treated with TCDD or fed a vitamin A-free diet occurs as a result of increased rates of retinol esterification.  相似文献   

5.
Abstract. Regulation by vitamin A of cell proliferation and differentiation of epithelial tissues is well-established. Deficiency of vitamin A in experimental animals leads to the development of hyperplasia and squamous metaplasia. The objective of the present study was to examine, for young hamsters, the effects of variable levels of the vitamin in the liver and trachea, on cell proliferation and morphology of tracheal epithelium and on body weights. Newly born litters were maintained on vitamin A-supplemented and vitamin A-deficient diets, and various parameters were examined at different ages. Retinol and retinyl palmitate levels were determined by high performance liquid chromatography. For animals on the supplemented diet, concentrations of liver retinyl palmitate and retinol increased progressively with age, reaching highest levels of approximately 84 and 1 -9 μg/g liver, respectively, at 28 d. In contrast, in animals on the vitamin A-deficient diet, the retinyl palmitate and retinol levels decreased progressively, reaching the lowest levels of approximately 0–32 and 0–09 μg/g, respectively. No significant reduction in retinol was observed in the trachea of animals maintained on the deficient diet for at least 20 d; their tracheas were depleted of retinol at 28 d. No vitamin A-associated differences were, however, observed in the labelling indices, growth fraction or in the morphology of the tracheal epithelium. Both the control and vitamin A-deficient animals gained weight progressively until 36 d of age, although the weight of animals in the latter group remained below those in the former group. These results show that mild-to-severe deficiency of vitamin A had no effects on cell proliferation or tracheal morphology of the hamster. The hyperplasia and squamous metaplasia in the trachea occurs only at an extreme vitamin A-deficiency when the tissue levels of the vitamin are depleted.  相似文献   

6.
Regulation by vitamin A of cell proliferation and differentiation of epithelial tissues is well-established. Deficiency of vitamin A in experimental animals leads to the development of hyperplasia and squamous metaplasia. The objective of the present study was to examine, for young hamsters, the effects of variable levels of the vitamin in the liver and trachea, on cell proliferation and morphology of tracheal epithelium and on body weights. Newly born litters were maintained on vitamin A-supplemented and vitamin A-deficient diets, and various parameters were examined at different ages. Retinol and retinyl palmitate levels were determined by high performance liquid chromatography. For animals on the supplemented diet, concentrations of liver retinyl palmitate and retinol increased progressively with age, reaching highest levels of approximately 84 and 1.9 micrograms g liver, respectively, at 28 d. In contrast, in animals on the vitamin A-deficient diet, the retinyl palmitate and retinol levels decreased progressively, reaching the lowest levels of approximately 0.32 and 0.09 micrograms/g, respectively. No significant reduction in retinol was observed in the trachea of animals maintained on the deficient diet for at least 20 d: their tracheas were depleted of retinol at 28 d. No vitamin A-associated differences were, however, observed in the labelling indices, growth fraction or in the morphology of the tracheal epithelium. Both the control and vitamin A-deficient animals gained weight progressively until 36 d of age, although the weight of animals in the latter group remained below those in the former group. These results show that mild-to-severe deficiency of vitamin A had no effects on cell proliferation or tracheal morphology of the hamster. The hyperplasia and squamous metaplasia in the trachea occurs only at an extreme vitamin A-deficiency when the tissue levels of the vitamin are depleted.  相似文献   

7.
Experiments were conducted to determine the influence of dietary levels of vitamin A and alpha-tocopherol on the amounts and composition of retinyl esters in the retinal pigment epithelium of light-adapted albino rats. Groups of rats were fed diets containing alpha-tocopherol and either no retinyl palmitate, adequate retinyl palmitate, or excessive retinyl palmitate. Other groups of rats received diets lacking alpha-tocopherol and containing the same three levels of retinyl palmitate. Retinoic acid was added to diets lacking retinyl palmitate. After 27 weeks, the animals were light-adapted to achieve essentially total visual pigment bleaches, and the neural retinas and retinal pigment epithelium-eyecups were then dissected from each eye for vitamin A ester determinations. Almost all of the retinyl esters were found in the retinal pigment epithelium-eyecup portions of the eyes, mainly as retinyl palmitate and retinyl stearate. Maintaining rats on a vitamin A-deficient, retinoic acid-containing diet led to significant reductions in retinal pigment epithelial retinyl ester levels in rats fed both the vitamin E-supplemented and vitamin E-deficient diets; contrary to expectations, the effect of dietary vitamin A deficiency was more pronounced in the vitamin E-supplemented rats. Vitamin A deficiency in retinoic acid-maintained animals also led to significant reductions in retinyl palmitate-to-stearate ester ratios in the retinal pigment epithelia of both vitamin E-supplemented and vitamin E-deficient rats. Excessive dietary intake of vitamin A had little, if any, effect on retinal pigment epithelial retinyl ester content or composition. Vitamin E deficiency resulted in significant increases in retinal pigment epithelial retinyl palmitate content and in palmitate-to-stearate ester ratios in rats fed all three levels of vitamin A, but had little effect on retinal pigment epithelial retinyl stearate content. In other tissues, vitamin E deficiency has been shown to lower vitamin A levels, and it is widely accepted that this effect is due to autoxidative destruction of vitamin A. The increase in retinal pigment epithelial vitamin A ester levels in response to vitamin E deficiency indicates that vitamin E does not regulate vitamin A levels in this tissue primarily by acting as an antioxidant, but rather may act as an inhibitor of vitamin A uptake and/or storage. The effect of vitamin E on pigment epithelial vitamin A levels may be mediated by the vitamin E-induced change in retinyl palmitate-to-stearate ratios.  相似文献   

8.
Charge effects on phospholipid monolayers in relation to cell motility   总被引:1,自引:0,他引:1  
A new sensitive method for the assay of retinyl ester hydrolase in vitro was developed and applied to liver homogenates of 18 young pigs with depleted-to-adequate liver vitamin A reserves. Radioactive substrate was not required, because the formation of retinol could be adequately quantitated by reversed-phase high-performance liquid chromatography. Optimal hydrolase activity was observed with 500 microM retinyl palmitate, 100 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, and 2 mg/ml Triton X-100 at pH 8.0. The relative rates of hydrolysis of six different retinyl esters by liver homogenate were: retinyl linolenate (100%), myristate (99%), palmitate (47%), oleate (38%), linoleate (31%), and stearate (29%). The enzyme was found primarily in the membrane-containing fractions of liver (59 +/- 3%, S.E.) and kidney (76 +/- 3%), with considerably lower overall activity in kidney (57-375 nmol/h per g of tissue) than in liver (394-1040 nmol/h per g). Retinyl ester hydrolase activity in these pigs was independent of serum retinol values, which ranged from 3 to 24 micrograms/dl, and of liver vitamin A concentrations from 0 to 32 micrograms/g. Pig liver retinyl ester hydrolase differs from the rat liver enzyme in its substrate specificity, bile acid stimulation, and interanimal variability.  相似文献   

9.
A new sensitive method for the assay of retinyl ester hydrolase in vitro was developed and applied to liver homogenates of 18 young pigs with depleted-to-adequate liver vitamin A reserves. Radioactive substrate was not required, because the formation of retinol could be adequately quantitated by reversed-phase high-performance liquid chromatography. Optimal hydrolase activity was observed with 500 μM retinyl palmitate, 100 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, and 2 mg/ml Triton X-100 at pH 8.0. The relative rates of hydrolysis of six different retinyl esters by liver homogenate were: retinyl linolenate (100%), myristate (99%), palmitate (47%), oleate (38%), linoleate (31%), and streate (29%). The enzyme was found primarily in the membrane-containing fractions of liver (59±3%, S.E.) and kidney (76±3%), with considerably lower overall activity in kidney (57–375 nmol/h per g of tissue) than in liver (394–1040 nmol/h per g). Retinyl ester hydrolase activity in these pigs was independent of serum retinol values, which ranged from 3 to 24 μg/dl, and of liver vitamin A concentrations from 0 to 32 μg/g. Pig liver retinyl ester hydrolase from the rat liver enzyme in its substrate specificity, bile acid stimulation, and interanimal variability.  相似文献   

10.
The gene encoding cellular retinol (ROL, vitA)-binding protein type I (CRBPI) has been inactivated. Mutant mice fed a vitA-enriched diet are healthy and fertile. They do not present any of the congenital abnormalities related to retinoic acid (RA) deficiency, indicating that CRBPI is not indispensable for RA synthesis. However, CRBPI deficiency results in an approximately 50% reduction of retinyl ester (RE) accumulation in hepatic stellate cells. This reduction is due to a decreased synthesis and a 6-fold faster turnover, which are not related to changes in the levels of RE metabolizing enzymes, but probably reflect an impaired delivery of ROL to lecithin:retinol acyltransferase. CRBPI-null mice fed a vitA-deficient diet for 5 months fully exhaust their RE stores. Thus, CRBPI is indispensable for efficient RE synthesis and storage, and its absence results in a waste of ROL that is asymptomatic in vitA-sufficient animals, but leads to a severe syndrome of vitA deficiency in animals fed a vitA-deficient diet.  相似文献   

11.
The steady-state concentrations of retinol in rat tissues varied as a function of dietary α-tocopherol. The liver, kidney, and intestinal retinol concentrations increased in animals fed an α-tocopherol-deficient diet despite a decrease (liver) or no change (kidney and intestine) in the concentrations of total vitamin A. In contrast, in lung the concentrations of both retinol and total vitamin A decreased. α-Tocopherol inhibited retinyl palmitate hydrolase in vitro in liver, kidney, and intestine; had minimal effect on the testes hydrolase; and stimulated the lung hydrolase. Fifty percent inhibition of the liver hydrolase was provided by an α-tocopherol concentration (100 μm), close to that reported in livers of rats fed a purified diet, constituted with moderately low amounts of α-tocopheryl acetate. Phylloquinone (vitamin K1) inhibited the retinyl palmitate hydrolase in vitro in all tissues tested, and was about fivefold more potent than α-tocopherol. The effects of phylloquinone and α-tocopherol on the liver hydrolase were additive, not synergistic. The antioxidant N,N′-diphenyl-p-phenylenediamine, the most effective synthetic vitamin E substitute known, had little effect on the hydrolase. These data show that α-tocopherol effects vitamin A metabolism in several tissues, and suggest that it may be a physiological effector of tissue retinol homeostasis.  相似文献   

12.
The four most important non-specific carboxylesterases from rat liver were assayed for their ability to hydrolyse retinyl esters. Only the esterases with pI 6.2 and 6.4 (= esterase ES-4) are able to hydrolyse retinyl palmitate. Their specific activities strongly depend on the emulsifier used (maximum rate: 440 nmol of retinol liberated/h per mg of esterase). Beside retinyl palmitate, these esterases cleave palmitoyl-CoA and monoacylglycerols with much higher rates, as well as certain drugs (e.g. aspirin and propanidid). However, no transacylation between palmitoyl-CoA and retinol occurs. Retinyl acetate also is a substrate for the above esterases and for another one with pI 5.6 (= esterase ES-3). Again the emulsifier influences the hydrolysis by these esterases (maximum rates: 475 nmol/h per mg for ES-4 and 200 nmol/h per mg for ES-3). Differential centrifugation of rat liver homogenate reveals that retinyl palmitate hydrolase activity is highly enriched in the plasma membranes, but only moderately so in the endoplasmic reticulum, where the investigated esterases are located. Since the latter activity can be largely inhibited with the selective esterase inhibitor bis-(4-nitrophenyl) phosphate, it is concluded that the esterases with pI 6.2 and 6.4 (ES-4) represent the main retinyl palmitate hydrolase of rat liver endoplasmic reticulum. In view of this cellular localization, the enzyme could possibly be involved in the mobilization of retinol from the vitamin A esters stored in the liver. However, preliminary experiments in vivo have failed to demonstrate such a biological function.  相似文献   

13.
S Takase  T Goda  H Yokogoshi  T Hoshi 《Life sciences》1992,51(18):1459-1466
A study was conducted to investigate the effects of a simulated weightlessness induced by chronic immobilization on vitamin A status. To simulate the stress condition of weightlessness, rats were suspended for 10 days in a special jacket to which metal chains were attached. Animals received a commercial stock diet. Control rats were pair-fed in reference to the suspended rats. As compared with the control, prolonged immobilization resulted in a decrease in body weight gain and an increase in adrenal weight occurred. In the suspended rats, serum concentrations of retinol and retinol-binding protein (RBP) declined. Hepatic retinyl palmitate content increased, and the hepatic retinol level was decreased. The prolonged immobilization led to significantly reduced retinyl palmitate levels in the testis and lung as well as lowered testicular retinol levels. The results suggest that the stress state induced by prolonged immobilization caused accumulation of hepatic retinyl palmitate, decreasing the serum retinol concentration and retinyl ester content in the extrahepatic tissues.  相似文献   

14.
The visual cells, visual pigments and major retinoids of the Mongolian jird (Meriones unguiculatus) were examined. Light and electron microscope analyses show that these jirds had mainly rod photoreceptors. Octylglucoside extracts prepared from their retinas contained only rhodopsin with a maximum absorption at 497 nm and a concentration of 0.51 nmol per retina. Employing a standard method of high performance liquid chromatography (HPLC), the pigment epithelium from each eye was found to possess 0.52 nmol of retinyl palmitate (the most abundant form of retinyl ester) along with a small amount of retinol (0.02 nmol). Most of the retinoids in the body of these animals are stored in the liver, in the form of retinyl palmitate (1228.80 nmol per gram liver). As the Mongolian jird is small, inexpensive and readily available, this animal is a mammalian species suitable for the research of the biochemistry of retinoids and vision.  相似文献   

15.
The kinetics of esterification of exogenous retinol by cell membranes prepared from the crude homogenate of the frog retinal pigment epithelium was studied. The formation of retinyl palmitate from added retinol was directly assayed by high performance liquid chromatography (HPLC). A linear relationship was observed between the amount of protein (up to 2 mg) in the incubation medium and the amount of retinyl palmitate formed. At room temperature, this reaction took less than 2 hours to complete. By varying the substrate concentration in the incubation medium, the reciprocal of initial velocity of the reaction (nmol retinyl palmitate formed per hour) was plotted against the reciprocal of substrate concentration (nmol of retinol). This double-reciprocal plot shows that the apparent Km of the reaction was 10 microM with an apparent Vmax of 9.1 nmol of retinyl palmitate per hour per mg protein. When this assay was repeated in the presence of 3,4-didehydroretinol (20 microM), the kinetics of the reaction showed the pattern of that of a competitive inhibitor, suggesting that 3,4-didehydroretinol competes with retinol for the same active site for esterification. The esterification of 3,4-didehydroretinol resulted in the formation of 3,4-didehydroretinyl palmitate, which was also measured by HPLC. The amount of 3,4-didehydroretinyl palmitate formed by this reaction decreased in proportion to increased retinol concentration in the incubation mixture. This further confirms that a competition exists between the esterification of retinol and 3,4-didehydroretinol by retinal pigment epithelium of the frog.  相似文献   

16.
A study was conducted on the incorporation of [11-3H]retinyl acetate into various retinyl esters in liver tissues of rats either vitamin A-sufficient, vitamin A-deficient or vitamin A-deficient and maintained on retinoic acid. Further, the metabolism of [11-3H]retinyl acetate to polar metabolites in liver tissues of these three groups of animals was investigated. Retinol metabolites were analyzed by high-performance liquid chromatography. In vitamin A-sufficient rat liver, the incorporation of radioactivity into retinyl palmitate and stearate was observed at 0.25 h after the injection of the label. The label was further detected in retinyl laurate, myristate, palmitoleate, linoleate, pentadecanoate and heptadecanoate 3 h after the injection. The specific radioactivities (dpm/nmol) of all retinyl esters increased with time. However, the rate of increase in the specific radioactivity of retinyl laurate was found to be significantly higher (66-fold) than that of retinyl palmitate 24 h after the injection of the label. 7 days after the injection of the label, the specific radioactivity between different retinyl esters were found to be similar, indicating that newly dosed labelled vitamin A had now mixed uniformly with the endogenous pool of vitamin A in the liver. The esterification of labelled retinol was not detected in liver tissues of vitamin A-deficient or retinoic acid-supplemented rats at any of the time point studied. Among the polar metabolites analyzed, the formation of [3H]retinoic acid from [3H]retinyl acetate was found only in vitamin A-deficient rat liver 24 h after the injection of the label. A new polar metabolite of retinol (RM) was detected in liver of the three groups of animals. The formation of 3H-labelled metabolite RM from [3H]retinyl acetate was not detected until 7 days after the injection of the label in the vitamin A-sufficient rat liver, suggesting that metabolite RM could be derived from a more stable pool of vitamin A.  相似文献   

17.
The repeated epilation (Er) mutation in mice causes successive loss and regrowth of hair in heterozygotes (Er/+), and blocks orofacial development and epidermal differentiation in lethal homozygotes (Er/Er). Because the mutation affects a systemic factor, because the Er phenotypes resemble exposure to excess retinoids and because retinoids are critical regulators of epithelial differentiation, we examined whether systemic retinoid levels are altered by the Er defect. Liver retinoic acid and retinol were elevated 1.5- and 3.5-fold, respectively, in adult heterozygotes (Er/+) compared to normal (+/+) animals. Retinyl palmitate was increased 2-fold in heterozygous skin and 3-fold in kidney, but the retinol level in plasma was only half that of normal animals. Newborn heterozygous liver also had nearly 2-fold increased retinoids compared to normal. In contrast, Er/Er newborns had reduced retinoid levels in liver, two-thirds the retinol and 15% the retinyl palmitate compared to normal, but greater than 4-fold elevated levels of retinyl palmitate in the extrahepatic body. Tissue contents of retinol binding protein (RBP), which transports vitamin A from the liver to the remainder of the body, were determined by immunoblotting with anti-mouse RBP. Newborn normal and mutant animals had similar liver microsomal RBP contents. RBP contents in plasma and in liver microsomes were also similar in normal and Er/+ adults despite different retinol contents in the Er/+ tissues. Hair follicles of the Er/+, but not the normal adult, were stained with this antiserum to RPB in the outer root sheath layer. These results strongly suggest that altered retinoid distribution is associated with, and may be responsible for, the altered epithelial differentiation in the Er mutant.  相似文献   

18.
Eight groups of 13-15 female rats were fed purified diets after littering. Four groups received a low protein (8% casein) diet (groups 8) and the others, a normal protein (20% casein) diet (groups 20). Carbohydrates were supplied either as starch (groups S) or as starch plus 40% fructose (groups F). Half the animals received a 0.4% methionine supplementation (groups M). Four or five dams per group were sacrificed on days 2, 7 and 14 after littering. The diet intake was increased by methionine supplementation, substitution of starch for fructose and increased protein content, mainly during the second week of lactation. This influenced weight variation of the dams and litter growth. On all days, the plasma levels of cholesterol esters, triglycerides and phospholipids were positively correlated with the dietary protein level. On days 7 and 14, the liver neutral lipid content was increased in rats fed the low protein diets supplemented with methionine (groups 8SM and 8FM) and the normal protein diets containing 40% fructose (groups 20F and 20FM). The plasma free threonine content was positively correlated with the protein level in the diet. On day 14, rats fed a low protein diet had a threonine deficiency, except those in groups 8S and 8F. The plasma free threonine content of these rats was not reduced, possibly due to an impaired utilization of this amino acid. The liver lipidosis observed during lactation, in contrast to that observed during growth with a low protein diet, was not due to a threonine deficiency.  相似文献   

19.
We evaluated whether nutritional vitamin A deficiency generates oxidative stress and inflammation in aorta. Wistar male rats (21 days old) were given free access to a control (8 mg retinol as retinyl palmitate/kg) or a vitamin A- deficient diet for three months. One group of deficient animals was fed with the control diet fifteen days before sacrifice. Thiobarbituric acid-reactive substances (TBARS) and nitrite concentration where both analyzed in serum and aorta. Aorta Copper-Zinc Superoxide dismutase (CuZnSOD), Glutathion peroxidase (GPx) and Catalase (CAT) activities were measured. In addition, binding activity of the nuclear factor- kB (NF-kB), inducible and endothelial Nitric Oxide synthase (iNOS and eNOS, respectively) and Ciclooxygenase-2 (COX-2) expressions were determinated in aorta. Rats fed the vitamin A- deficient diet were characterized by sub-clinical plasma retinol concentration and showed increased serum and aorta concentrations of TBARS compared to controls. Lower than control activities of CuZnSOD, GPx, and CAT were observed in aorta of the vitamin A- deficient group. The binding activity of NF- kB was higher in vitamin A- deficient animals than controls. In addition, NO production evaluated as nitrite concentration increased in aorta and serum, associated with a higher expression of iNOS, eNOS and COX-2 in aorta of vitamin A-deficient rats. The incorporation of vitamin A into the diet of vitamin A-deficient rats reverted the changes observed in TBARS level, CuZnSOD and GPx activities, nitrite concentration and also, iNOS, eNOS and COX-2 expression. Prooxidant environment and inflammation are induced by vitamin A deficiency in rat aorta.  相似文献   

20.
A major proportion of selenium in bovine milk was found in fluorometric analysis to be associated with the casein fraction, largely in alkali-labile form, and the rest with the whey fraction mostly in free selenite form. This uneven distribution of milk selenium seems to provide an explanation for selenium deficiency in purified caseins. The activity of glutathione peroxidase, a selenoprotein, in the liver of growing male rats fed ad libitum low-selenium diets containing either vitamin-free casein or Torula yeast 0.065 ± 0.012 or 0.015 ± 0.004 μ g Se/g diet, respectively) for 3 weeks decreased to 4 to 6% of that of the control rats fed a commercial stock diet (0.185 ± 0.092 μ g Se/g diet). Selenium status was evaluated by three different parameters for the rats assigned under pair-feeding regimen to those vitamin-free casein-based diets which were supplemented with graded levels of selenium as sodium selenite. The hepatic levels of the thiobarbituric acid-reactive substance, an indication of lipid peroxidation, decreased to control level with selenium supplementation per g diet of 0.1 μ g and over. The hepatic glutathione peroxidase activity reached a plateau above a 0.1 μ g/g diet of selenium supplementation, whereas the erythrocyte enzyme activity increased with increasing levels of supplementary selenium. These results support the notion that semi-purified diets containing vitamin-free casein as a prime protein source would not satisfy the selenium requirement of growing animals unless deliberately supplemented with additional selenium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号