首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spahn CM  Jan E  Mulder A  Grassucci RA  Sarnow P  Frank J 《Cell》2004,118(4):465-475
Internal initiation of protein synthesis in eukaryotes is accomplished by recruitment of ribosomes to structured internal ribosome entry sites (IRESs), which are located in certain viral and cellular messenger RNAs. An IRES element in cricket paralysis virus (CrPV) can directly assemble 80S ribosomes in the absence of canonical initiation factors and initiator tRNA. Here we present cryo-EM structures of the CrPV IRES bound to the human ribosomal 40S subunit and to the 80S ribosome. The CrPV IRES adopts a defined, elongate structure within the ribosomal intersubunit space and forms specific contacts with components of the ribosomal A, P, and E sites. Conformational changes in the ribosome as well as within the IRES itself show that CrPV IRES actively manipulates the ribosome. CrPV-like IRES elements seem to act as RNA-based translation factors.  相似文献   

2.
Internal ribosome entry sites (IRESs) are RNA elements capable of initiating translation on an internal portion of a messenger RNA. The intergenic region (IGR) IRES of the Dicistroviridae virus family folds into a triple pseudoknot tertiary structure, allowing it to recruit the ribosome and initiate translation in a structure dependent manner. This IRES has also been reported to drive translation in Escherichia coli and to date is the only described translation initiation signal that functions across domains of life. Here we show that unlike in the eukaryotic context the tertiary structure of the IGR IRES is not required for prokaryotic ribosome recruitment. In E. coli IGR IRES translation efficiency is dependent on ribosomal protein S1 in conjunction with an AG-rich Shine-Dalgarno-like element, supporting a model where the translational activity of the IGR IRESs is due to S1-mediated canonical prokaryotic translation.  相似文献   

3.
Protein syntheses mediated by cellular and viral internal ribosome entry sites (IRESs) are believed to have many features in common. Distinct mechanisms for ribosome recruitment and preinitiation complex assembly between the two processes have not been identified thus far. Here we show that the methylation status of rRNA differentially influenced the mechanism of 80S complex formation on IRES elements from the cellular sodium-coupled neutral amino acid transporter 2 (SNAT2) versus the hepatitis C virus mRNA. Translation initiation involves the assembly of the 48S preinitiation complex, followed by joining of the 60S ribosomal subunit and formation of the 80S complex. Abrogation of rRNA methylation did not affect the 48S complex but resulted in impairment of 80S complex assembly on the cellular, but not the viral, IRESs tested. Impairment of 80S complex assembly on the amino acid transporter SNAT2 IRES was rescued by purified 60S subunits containing fully methylated rRNA. We found that rRNA methylation did not affect the activity of any of the viral IRESs tested but affected the activity of numerous cellular IRESs. This work reveals a novel mechanism operating on a cohort of cellular IRESs that involves rRNA methylation for proper 80S complex assembly and efficient translation initiation.  相似文献   

4.
Two exceptional mechanisms of eukaryotic translation initiation have recently been identified that differ fundamentally from the canonical factor-mediated, end-dependent mechanism of ribosomal attachment to mRNA. Instead, ribosomal 40S subunits bind in a factor-independent manner to the internal ribosomal entry site (IRES) in an mRNA. These two mechanisms are exemplified by initiation on the unrelated approximately 300 nt.-long Hepatitis C virus (HCV) IRES and the approximately 200 nt.-long cricket paralysis virus (CrPV) intergenic region (IGR) IRES, respectively. Ribosomal binding involves interaction with multiple non-contiguous sites on these IRESs, and therefore also differs from the factor-independent attachment of prokaryotic ribosomes to mRNA, which involves base-pairing to the linear Shine-Dalgarno sequence. The HCV IRES binds to the solvent side of the 40S subunit, docks a domain of the IRES into the ribosomal exit (E) site and places the initiation codon in the ribosomal peptidyl (P) site. Subsequent binding of eIF3 and the eIF2-GTP/initiator tRNA complex to form a 48S complex is followed by subunit joining to form an 80S ribosome. The CrPV IRES binds to ribosomes in a very different manner, by occupying the ribosomal E and P sites in the intersubunit cavity, thereby excluding initiator tRNA. Ribosomes enter the elongation stage of translation directly, without any involvement of initiator tRNA or initiation factors, following recruitment of aminoacyl-tRNA to the ribosomal aminoacyl (A) site and translocation of it to the P site.  相似文献   

5.
Translation of the genomes of several positive-sense RNA viruses follows end-independent initiation on an internal ribosomal entry site (IRES) in the viral mRNA. There are four major IRES groups, and despite major differences in the mechanisms that they use, one unifying characteristic is that each mechanism involves essential non-canonical interactions of the IRES with components of the canonical translational apparatus. Thus the ~ 200nt.-long Type 4 IRESs (epitomized by Cricket paralysis virus) bind directly to the intersubunit space on the ribosomal 40S subunit, followed by joining to a 60S subunit to form active ribosomes by a factor-independent mechanism. The ~ 300nt.-long type 3 IRESs (epitomized by Hepatitis C virus) binds independently to eukaryotic initiation factor (eIF) 3, and to the solvent-accessible surface and E-site of the 40S subunit: addition of eIF2-GTP/initiator tRNA is sufficient to form a 48S complex that can join a 60S subunit in an eIF5/eIF5B-mediated reaction to form an active ribosome. Recent cryo-electron microscopy and biochemical analyses have revealed a second general characteristic of the mechanisms of initiation on Type 3 and Type 4 IRESs. Both classes of IRES induce similar conformational changes in the ribosome that influence entry, positioning and fixation of mRNA in the ribosomal decoding channel. HCV-like IRESs also stabilize binding of initiator tRNA in the peptidyl (P) site of the 40S subunit, whereas Type 4 IRESs induce changes in the ribosome that likely promote subsequent steps in the translation process, including subunit joining and elongation.  相似文献   

6.
Lentiviruses, the prototype of which is HIV-1, can initiate translation either by the classical cap-dependent mechanism or by internal recruitment of the ribosome through RNA domains called IRESs (internal ribosome entry sites). Depending on the virus considered, the mechanism of IRES-dependent translation differs widely. It can occur by direct binding of the 40S subunit to the mRNA, necessitating a subset or most of the canonical initiation factors and/or ITAF (IRES trans-acting factors). Nonetheless, a common feature of IRESs is that ribosomal recruitment relies, at least in part, on IRES structural determinants. Lentiviral genomic RNAs present an additional level of complexity, as, in addition to the 5'-UTR (untranslated region) IRES, the presence of a new type of IRES, embedded within Gag coding region was described recently. This IRES, conserved in all three lentiviruses examined, presents conserved structural motifs that are crucial for its activity, thus reinforcing the link between RNA structure and function. However, there are still important gaps in our understanding of the molecular mechanism underlying IRES-dependent translation initiation of HIV, including the determination of the initiation factors required, the dynamics of initiation complex assembly and the dynamics of the RNA structure during initiation complex formation. Finally, the ability of HIV genomic RNA to initiate translation through different pathways questions the possible mechanisms of regulation and their correlation to the viral paradigm, i.e. translation versus encapsidation of its genomic RNA.  相似文献   

7.
The Simian picornavirus type 9 (SPV9) 5'-untranslated region (5' UTR) has been predicted to contain an internal ribosomal entry site (IRES) with structural elements that resemble domains of hepacivirus/pestivirus (HP) IRESs. In vitro reconstitution of initiation confirmed that this 5' UTR contains an IRES and revealed that it has both functional similarities and differences compared to HP IRESs. Like HP IRESs, the SPV9 IRES bound directly to 40S subunits and eukaryotic initiation factor (eIF) 3, depended on the conserved domain IIId for ribosomal binding and consequently for function, and additionally required eIF2/initiator tRNA to yield 48S complexes that formed elongation-competent 80S ribosomes in the presence of eIF5, eIF5B, and 60S subunits. Toeprinting analysis revealed that eIF1A stabilized 48S complexes, whereas eIF1 induced conformational changes in the 40S subunit, likely corresponding to partial opening of the entry latch of the mRNA-binding channel, that were exacerbated by eIF3 and suppressed by eIF1A. The SPV9 IRES differed from HP IRESs in that its function was enhanced by eIF4A/eIF4F when the IRES was adjacent to the wild-type coding sequence, but was less affected by these factors or by a dominant negative eIF4A mutant when potentially less structured coding sequences were present. Exceptionally, this IRES promoted binding of initiator tRNA to the initiation codon in the P site of 40S subunits independently of eIF2. Although these 40S/IRES/tRNA complexes could not form active 80S ribosomes, this constitutes a second difference between the SPV9 and HP IRESs. eIF1 destabilized the eIF2-independent ribosomal binding of initiator tRNA.  相似文献   

8.
The cricket paralysis virus (CrPV), a member of the CrPV-like virus family, contains a single positive-stranded RNA genome that encodes two non-overlapping open reading frames separated by a short intergenic region (IGR). The CrPV IGR contains an internal ribosomal entry site (IRES) that directs the expression of structural proteins. Unlike previously described IRESs, the IGR IRES initiates translation by recruiting 80S ribosomes in the absence of initiator Met-tRNA(i) or any canonical initiation factors, from a GCU alanine codon located in the A-site of the ribosome. Here, we have shown that a variety of mutations, designed to disrupt individually three pseudoknot (PK) structures and alter highly conserved nucleotides among the CrPV-like viruses, inhibit IGR IRES-mediated translation. By separating the steps of translational initiation into ribosomal recruitment, ribosomal positioning and ribosomal translocation, we found that the mutated IRES elements could be grouped into two classes. One class, represented by mutations in PKII and PKIII, bound 40S subunits with significantly reduced affinity, suggesting that PKIII and PKII are involved in the initial recruitment of the ribosome. A second class of mutations, exemplified by alterations in PKI, did not affect 40S binding but altered the positioning of the ribosome on the IRES, indicating that PKI is involved in the correct positioning of IRES-associated ribosomes. These results suggest that the IGR IRES has distinct pseudoknot-like structures that make multiple contacts with the ribosome resulting in initiation factor-independent recruitment and correct positioning of the ribosome on the mRNA.  相似文献   

9.
An amino-terminal methionine corresponding to a recombinant AUG initiation codon sometimes affects the functions of proteins. To test the performance of translation mediated by a dicistroviral internal ribosome entry site (IRES), which initiates protein synthesis with elongator tRNAs, we optimized the conditions for cell-free translation. Although the IRES is 188 nucleotides long, a further 50 nucleotides of the upstream sequence stabilized translation efficiency. Optimal ion concentrations were affected by the sequences of the constructs. In a wheat-germ system, IRES-mediated translation produced 78 microg/ml of firefly luciferase from the AUG-deleted sequence, suggesting that dicistroviral IRESs will be able to yield polypeptides with a specific N-terminal amino acid other than methionine.  相似文献   

10.
Translation of many cellular and viral mRNAs is directed by internal ribosomal entry sites (IRESs). Several proteins that enhance IRES activity through interactions with IRES elements have been discovered. However, the molecular basis for the IRES-activating function of the IRES-binding proteins remains unknown. Here, we report that NS1-associated protein 1 (NSAP1), which augments several cellular and viral IRES activities, enhances hepatitis C viral (HCV) IRES function by facilitating the formation of translation-competent 48S ribosome-mRNA complex. NSAP1, which is associated with the solvent side of the 40S ribosomal subunit, enhances 80S complex formation through correct positioning of HCV mRNA on the 40S ribosomal subunit. NSAP1 seems to accomplish this positioning function by directly binding to both a specific site in the mRNA downstream of the initiation codon and a 40S ribosomal protein (or proteins).  相似文献   

11.
The internal ribosome entry site within the intergenic region (IGR IRES) of the Dicistroviridae family mimics a tRNA to directly assemble 80 S ribosomes and initiate translation at a non-AUG codon from the ribosomal A-site. A comparison of IGR IRESs within this viral family reveals structural similarity but little sequence similarity. However, a few specific conserved elements exist, which likely have important roles in IRES function. In this study, we have generated a battery of mutations to characterize the role of a conserved loop (L1.1) region of the IGR IRES. Mutating specific nucleotides within the L1.1 region inhibited IGR IRES-mediated translation in rabbit reticulocyte lysates. By assaying different steps in IRES function, we found that the mutant L1.1 IRESs had reduced affinity for 80 S ribosomes but not 40 S subunits, indicating that the L1.1 region mediated either binding to preformed 80 S or 60 S joining. Furthermore, mutations in L1.1 altered the position of the ribosome on the mutant IRES, indicating that the tRNA-like anticodon/codon mimic within the ribosomal P-site is disrupted. Structural studies have revealed that the L1.1 region interacts with the L1 stalk of the 60 S subunit, which is similar to the interactions between the T-loop of the E-site tRNA and ribosomal protein rpL1. Our results demonstrate that the conserved L1.1 region directs multiple steps in IGR IRES-mediated translation including ribosome binding and positioning, which are functions that the E-site tRNA may normally mediate during translation.  相似文献   

12.
Translation of hepatitis C viral proteins requires an internal ribosome entry site (IRES) located in the 5' untranslated region of the viral mRNA. The core domain of the hepatitis C virus (HCV) IRES contains a four-way helical junction that is integrated within a predicted pseudoknot. This domain is required for positioning the mRNA start codon correctly on?the 40S ribosomal subunit during translation initiation. Here, we present the crystal structure of this RNA, revealing a complex double-pseudoknot fold?that establishes the alignment of two helical elements on either side of the four-helix junction. The conformation of this core domain constrains the open reading frame's orientation for positioning on the 40S ribosomal subunit. This structure, representing the last major domain of HCV-like IRESs to be determined at near-atomic resolution, provides the basis for a comprehensive cryoelectron microscopy-guided model of the intact HCV IRES and its interaction with 40S ribosomal subunits.  相似文献   

13.
Overexpression and activation of the c-Src protein have been linked to the development of a wide variety of cancers. The molecular mechanism(s) of c-Src overexpression in cancer cells is not clear. We report here an internal ribosome entry site (IRES) in the c-Src mRNA that is constituted by both 5′-noncoding and -coding regions. The inhibition of cap-dependent translation by m7GDP in the cell-free translation system or induction of endoplasmic reticulum stress in hepatoma-derived cells resulted in stimulation of the c-Src IRES activities. Sucrose density gradient analyses revealed formation of a stable binary complex between the c-Src IRES and purified HeLa 40 S ribosomal subunit in the absence of initiation factors. We further demonstrate eIF2-independent assembly of 80 S initiation complex on the c-Src IRES. These features of the c-Src IRES appear to be reminiscent of that of hepatitis C virus-like IRESs and translation initiation in prokaryotes. Transfection studies and genetic analysis revealed that the c-Src IRES permitted initiation at the authentic AUG351, which is also used for conventional translation initiation of the c-Src mRNA. Our studies unveiled a novel regulatory mechanism of c-Src synthesis mediated by an IRES element, which exhibits enhanced activity during cellular stress and is likely to cause c-Src overexpression during oncogenesis and metastasis.  相似文献   

14.
Ribosome recruitment to eukaryotic mRNAs is generally thought to occur by a scanning mechanism, whereby the 40S ribosomal subunit binds in the vicinity of the 5'cap structure of the mRNA and scans until an AUG codon is encountered in an appropriate sequence context. Study of the picornaviruses allowed the characterization of an alternative mechanism of translation initiation. Picornaviruses can initiate translation via an internal ribosome entry segment (IRES), an RNA structure that directly recruits the 40S ribosomal subunits in a cap and 5' end independent fashion. Since its discovery, the notion of IRESs has extended to a number of different virus families and cellular RNAs. This review summarizes features of both cap-dependent and IRES-dependent mechanisms of translation initiation and discusses the role of cis-acting elements, which include the 5' cap, the 5'-untranslated region (UTR) and the poly(A) tail as well as the possible roles of IRESs as part of a cellular stress response mechanism and in the virus replication cycle.  相似文献   

15.
Eukaryotic mRNAs possess a poly(A) tail that enhances translation via the (7)mGpppN cap structure or internal ribosome entry sequences (IRESs). Here we address the question of how cellular IRESs recruit the ribosome and how recruitment is augmented by the poly(A) tail. We show that the poly(A) tail enhances 48S complex assembly by the c-myc IRES. Remarkably, this process is independent of the poly(A) binding protein (PABP). Purification of native 48S initiation complexes assembled on c-myc IRES mRNAs and quantitative label-free analysis by liquid chromatography and mass spectrometry directly identify eIFs 2, 3, 4A, 4B, 4GI, and 5 as components of the c-myc IRES 48S initiation complex. Our results demonstrate for the first time that the poly(A) tail augments the initiation step of cellular IRES-driven translation and implicate a distinct subset of translation initiation factors in this process. The mechanistic distinctions from cap-dependent translation may allow specific translational control of the c-myc mRNA and possibly other cellular mRNAs that initiate translation via IRESs.  相似文献   

16.
Internal ribosome entry site biology and its use in expression vectors.   总被引:16,自引:0,他引:16  
Internal ribosome entry sites (IRESs) are cis-acting elements that recruit the small ribosomal subunits to an internal initiator codon in the mRNA with the help of cellular trans-acting factors. The recent discovery of the IRES recognition site of the eIF4G initiation factor is beginning to shed some light into how IRES elements are recognized by the translational machinery. Additionally, the progress made in the understanding of the parameters that influence start codon selection will be instrumental in establishing the rational design of bicistronic expression vectors.  相似文献   

17.
The translational activity of the hepatitis C virus (HCV) internal ribosome entry site (IRES) and other HCV-like IRES RNAs depends on structured RNA elements in domains II and III, which serve to recruit the ribosomal 40S subunit, eukaryotic initiation factor (eIF) 3 and the ternary eIF2/Met-tRNAiMet/GTP complex and subsequently domain II assists subunit joining. Porcine teschovirus-1 talfan (PTV-1) is a member of the Picornaviridae family, with a predicted HCV-like secondary structure, but only stem-loops IIId and IIIe in the 40S-binding domain display significant sequence conservation with the HCV IRES. Here, we use chemical probing to show that interaction sites with the 40S subunit and eIF3 are conserved between HCV and HCV-like IRESs. In addition, we reveal the functional role of a strictly conserved co-variation between a purine–purine mismatch near the pseudoknot (A–A/G) and the loop sequence of domain IIIe (GAU/CA). These nucleotides are involved in a tertiary interaction, which serves to stabilize the pseudoknot structure and correlates with translational efficiency in both the PTV-1 and HCV IRES. Our data demonstrate conservation of functional domains in HCV and HCV-like IRESs including a more complex structure surrounding the pseudoknot than previously assumed.  相似文献   

18.
Type 2 internal ribosomal entry sites (IRESs) of encephalomyocarditis virus (EMCV), foot-and-mouth disease virus (FMDV) and other picornaviruses comprise five major domains H-L. Initiation of translation on these IRESs begins with specific binding of the central domain of initiation factor, eIF4G to the J-K domains, which is stimulated by eIF4A. eIF4G/eIF4A then restructure the region of ribosomal attachment on the IRES and promote recruitment of ribosomal 43S pre-initiation complexes. In addition to canonical translation factors, type 2 IRESs also require IRES trans-acting factors (ITAFs) that are hypothesized to stabilize the optimal IRES conformation that supports efficient ribosomal recruitment: the EMCV IRES is stimulated by pyrimidine tract binding protein (PTB), whereas the FMDV IRES requires PTB and ITAF(45). To test this hypothesis, we assessed the effect of ITAFs on the conformations of EMCV and FMDV IRESs by comparing their influence on hydroxyl radical cleavage of these IRESs from the central domain of eIF4G. The observed changes in cleavage patterns suggest that cognate ITAFs promote similar conformational changes that are consistent with adoption by the IRESs of comparable, more compact structures, in which domain J undergoes local conformational changes and is brought into closer proximity to the base of domain I.  相似文献   

19.
The pathway of HCV IRES-mediated translation initiation   总被引:12,自引:0,他引:12  
Otto GA  Puglisi JD 《Cell》2004,119(3):369-380
The HCV internal ribosome entry site (IRES) directly regulates the assembly of translation initiation complexes on viral mRNA by a sequential pathway that is distinct from canonical eukaryotic initiation. The HCV IRES can form a binary complex with an eIF-free 40S ribosomal subunit. Next, a 48S-like complex assembles at the AUG initiation codon upon association of eIF3 and ternary complex. 80S complex formation is rate limiting and follows the GTP-dependent association of the 60S subunit. Efficient assembly of the 48S-like and 80S complexes on the IRES mRNA is dependent upon maintenance of the highly conserved HCV IRES structure. This revised model of HCV IRES translation initiation provides a context to understand the function of different HCV IRES domains during translation initiation.  相似文献   

20.
The intergenic region-internal ribosome entry site (IGR-IRES) of dicistroviruses binds to 40S ribosomal subunits in the absence of eukaryotic initiation factors (eIFs). Although the conserved loop sequences in dicistroviral IGR-IRES elements are protected from chemical modifications in the presence of the 40S subunit, molecular components in the 40S subunit, which interacts with the loop sequences in the IRES, have not been identified. Here, a chemical crosslinking study using 4-thiouridine-labeled IGR-IRES revealed interactions of the IGR-IRES with several 40S proteins but not with the 18S rRNA. The strongest crosslinking signal was identified for ribosomal protein S25 (rpS25). rpS25 is known to be a neighbor of rpS5, which has been shown to interact with a related IGR-IRES by cryo-electron microscopy. Crosslinking analysis with site-directed mutants showed that nucleotides UU6089–6090, which are located in the loop region in conserved domain 2b in the IRES, appear to interact with rpS25. rpS25 is specific to eukaryotes, which explains why there is no recognition of the IGR-IRES by prokaryotic ribosomes. Although the idea that the IGR-IRES element may be a relict of a primitive translation system has been postulated, our experimental data suggest that the IRES has adapted to eukaryotic ribosomal proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号