首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Arylamine N-acetyltransferases (NATs) catalyse acetylation reactions which can result in either detoxification or activation of arylamine carcinogens. The human NAT loci (NAT1, NAT2, and a pseudogene, NATP) have been mapped to human chromosome 8p22, a region frequently deleted in tumours. There are three functional genes in mice (Nat1, Nat2, and Nat3) encoding for three NAT isoenzymes. Different alleles at the Nat2 locus are responsible for the acetylation polymorphism identified in different mouse strains. We show that Nat3 is close to Nat1 and Nat2, by screening of a P1 artificial chromosome (PAC) library and provide cytogenetic evidence for co-localisation of the three genes in chromosome region 8 B3.1-B3.3. The Nat region of mouse and human is homologous. We also provide sequence information and a restriction map in the vicinity of Nat1 and Nat2 and describe a noncoding exon located 6 kb upstream of the Nat2 coding region.  相似文献   

2.
Anaplastic large cell lymphoma (ALCL) is an entity of non-Hodgkin lymphomas (NHL) that often occurs in young children and adolescents. In the majority of cases, ALCL are of T-cell origin and contain the t(2;5)(p23;q35) leading to an NPM-ALK fusion or variant ALK translocations. In addition, there is an ALK-negative subtype of ALCL. The anaplastic lymphoid cell line TS1G6 established by interleukin (IL)-9 transfection of T-helper cells represents a murine model of this subtype. Here, we describe the cytogenetic features of this cell line using spectral karyotyping (SKY) and single-color fluorescence in situ hybridization (FISH). We show that TS1G6 cells exhibit a hypotetraploid karyotype with complex structural alterations. Several unbalanced translocations involved the chromosomal region 14E5, and different translocation partners, i.e. X?A6, 3A3 and 8A1. FISH analysis using a BAC clone containing c-myc confirmed the presence of six copies, but also demonstrated that two loci were irregularly located, indicating that additional intrachromosomal rearrangements had occurred. Moreover, a duplication of the region XF2 approximately 3 was identified. Furthermore, six chromosomes 15 were found, representing a trisomy 15 in a tetraploid chromosome complement, indicating an altered gene dosage of the oncogene c-myc located in region 15D3.  相似文献   

3.
Cat eye syndrome (CES) is typically associated with a supernumerary bisatellited marker chromosome (inv dup 22pter-22q11.2) resulting in four copies of this region. We describe an individual showing the inheritance of a minute supernumerary double ring chromosome 22, which resulted in expression of all cardinal features of CES. The size of the ring was determined by DNA dosage analysis and FISH analysis for five loci mapping to 22q11.2. The probes to the loci D22S9, D22S43, and ATP6E were present in four copies, whereas D22S57 and D22S181 were present in two copies. This finding further delineates the distal boundary of the critical region of CES, with ATP6E being the most distal duplicated locus identified. The phenotypically normal father and grandfather of the patient each had a small supernumerary ring chromosome and demonstrated three copies for the loci D22S9, D22S43, and ATP6E. Although three copies of this region have been reported in other cases with CES features, it is possible that the presence of four copies leads to greater susceptibility.  相似文献   

4.
Arylamine N-acetyltransferases (NATs) catalyse the acetylation of arylamine, arylhydrazine and arylhydroxylamine substrates by acetyl Coenzyme A. NAT has been discovered in a wide range of eukaryotic and prokaryotic species. Although prokaryotic NATs have been implicated in xenobiotic metabolism, to date no endogenous role has been identified for the arylamine N-acetyl transfer reaction in prokaryotes. Investigating the substrate specificity of these enzymes is one approach to determining a possible endogenous role for prokaryotic NATs. We describe an accurate and efficient assay for NAT activity that is suitable for high-throughput screening of potential NAT ligands. This assay has been utilised to identify novel substrates for pure NAT from Salmonella typhimurium and Mycobacterium smegmatis which show a relationship between the lipophilicity of the arylamine and its activity as a substrate. The lipophilic structure/activity relationship observed is proposed to depend on the topology of the active site using docking studies of the crystal structures of these NAT isoenzymes. The evidence suggests an endogenous role of NAT in the protection of bacteria from aromatic and lipophilic toxins.  相似文献   

5.
Conotruncal defects (CTDs) of the heart are a frequent component of DiGeorge, velocardiofacial, or other syndromes caused by deletions of the human chromosome 22q11 region (HSA22q11). In addition, some human patients with isolated nonsyndromic CTDs have been reported to have deletions of this region. Taken together, these findings lead to the conclusion that deletions of an HSA22q11 locus or loci produce abnormalities in cardiac development leading to CTDs. A spontaneous model of isolated inherited conotruncal malformations occurs in the keeshond dog. We have previously shown in experimental matings that nonsyndromic CTDs in the keeshond are inherited in a manner consistent with a major underlying locus. In the studies described in this article we tested two hypotheses: (1) the region of HSA22q11 commonly deleted in DiGeorge and related syndromes is evolutionarily conserved in the dog, and (2) a locus in this region is linked to hereditary CTD in the keeshond. Two loci within the minimal DiGeorge critical region (MDGCR) and two loci that lie telomeric to the MDGCR, one of which is commonly deleted in DiGeorge patients, were mapped in the dog using a combination of linkage analysis and fluorescence in situ hybridization (FISH). The results confirm conserved synteny of the loci DGS-I, CTP, D22S788 (N41), and IGLC on the telomeric end of canine chromosome 26 (CFA26). The group of four syntenic gene loci, which spans a genetic distance of 2.5 cM is the first to be mapped to this small acrocentric canine chromosome and adds gene-associated polymorphic markers to the developing dog linkage map. Linkage of loci in this region to hereditary CTD in the keeshond was excluded.  相似文献   

6.
To facilitate the identification of the gene responsible for Clouston hidrotic ectodermal dysplasia (HED), we used a chromosome 13-specific radiation hybrid panel to map 54 loci in the HED candidate region. The marker retention data were analyzed using RHMAP version 3. The 54 markers have an average retention frequency of 31.6% with decreasing retention as a function of distance from the centromere. Two-point analysis identified three linkage groups with a threshold lod score of 4.00; one linkage group consisted of 49 loci including the centromeric marker D13Z1 and the telomeric flanking marker for the HED candidate region D13S143. Assuming a centromeric retention model, multipoint maximum likelihood analysis of these 49 loci except D13Z1 provided a 1000:1 framework map ordering 29 loci with 21 unique map positions and approximately 2000 times more likely than the next order. Loci that could not be ordered with this level of support were positioned within a range of adjacent intervals. This map spans 347 cR9000, has an average resolution of 17.3 cR9000, and includes 3 genes (TUBA2, GJbeta2, and FGF-9), 18 ESTs, 19 polymorphic loci, and 8 single-copy DNA segments. Comparison of our RH map to a YAC contig showed an inconsistency in order involving a reversed interval of 6 loci. Fiber-FISH and FISH on interphase nuclei analyses with PACs isolated from this region supported our order. We also describe the isolation of 8 new chromosome 13q polymorphic (CA)n markers that have an average PIC value of 0.67. These data and mapping reagents will facilitate the isolation of disease genes from this region.  相似文献   

7.
8.
Arylamines are known bladder carcinogens deriving from tobacco smoke and environmental pollution. Arylamines are metabolised by NAT1 and NAT2 polymorphic enzymes in reactions of carcinogen activation and detoxification. We analysed genetic polymorphisms in both NAT1 and NAT2 genes in 56 bladder cancer patients and 320 healthy patients. Peripheral blood lymphocytes were collected from each subject and genotyped for NAT1 (six alleles) and NAT2 (four alleles) by PCR-RFLP. A weak association between NAT1 and NAT2 genotypes and bladder cancer risk was found when the genotypes were estimated separately (odds ratio OR 1.2, 95%CI 0.7-2.0, and OR 1.3, 95%CI 0.7-1.9, respectively). Almost all NAT1 genotypes possessing at least one "risk" *10 allele were more frequent in the bladder cancer group than in the control group. There was also an increased frequency of "risk" genotypes along with increased cigarette smoking in bladder cancer patients. The coincidence of NAT1-fast/NAT2-slow appears as a potential risk factor for urinary bladder cancer (OR 1.5, 0.8-3.0), as compared with the other genotype combinations.  相似文献   

9.
In the present study cytogenetic localization of eight fatty acid binding protein genes in the pig genome was shown. BAC clones, containing sequences of selected genes (FABP1, FABP2, FABP3, FABP4, FABP5, FABP6, FABP7 and FABP8) were derived from porcine BAC libraries and mapped by FISH to porcine chromosomes (SSC) 3q12, 8q25, 6q26, 4q12, 4q12, 16q22, 1p22 and 4q12, respectively. Detailed analyses of regions containing gene clusters (FABP4, FABP5, FABP8) in chromosome 4 were performed and their order was established. It was shown that these three genes are located beyond the FAT1 region. Assignment of the FABP genes to chromosome regions harboring quantitative trait loci (QTL) for fat deposition is discussed.  相似文献   

10.
The arylamine N-acetyltransferases (NATs) are a unique family of enzymes that catalyse the transfer of an acetyl group from acetyl-CoA to the terminal nitrogen of hydrazine and arylamine drugs and carcinogens. Human arylamine NATs are known to exist as two isoenzymes, NAT1 and NAT2. The objective of this study was to identify whether the genetic polymorphism of NAT2 plays a role in susceptibility to Diabetes Mellitus (DM). Ninety-seven patients with DM and 104 healthy controls were enrolled in the study. NAT2*5A, NAT2*6A, NAT2*7A/B and NAT2*14A polymorphisms were detected by using real time PCR with LightCycler (Roche Diagnostics GmbH, Mannheim, Germany). According to our data, the NAT2*5A and NAT2*6A mutant genotypes and NAT2*14A heterozygous genotype were associated with an increased risk of development of DM (OR = 47.06; 95%CI: 10.55-209.77 for NAT 2*5A, OR = 18.48; 95%CI: 3.83-89.11 for NAT2*6A and OR = 18.22; 95%CI: 6.29-52.76 for NAT2*14A). However, the NAT2*7A/B gene polymorphism carried no increased risk for developing DM disease. After grouping according to phenotypes as either slow or fast acetylators, NAT2*6A slow acetylator was found to be a significant risk factor for DM (OR = 6.09; 95%CI: 1.99-18.6, p = 0.02). The results indicate that NAT2 slow acetylator genotypes may be an important genetic determinant for DM in the Turkish population.  相似文献   

11.

Background

The human chromosome 8p23.1 region contains a 3.8–4.5 Mb segment which can be found in different orientations (defined as genomic inversion) among individuals. The identification of single nucleotide polymorphisms (SNPs) tightly linked to the genomic orientation of a given region should be useful to indirectly evaluate the genotypes of large genomic orientations in the individuals.

Results

We have identified 16 SNPs, which are in linkage disequilibrium (LD) with the 8p23.1 inversion as detected by fluorescent in situ hybridization (FISH). The variability of the 8p23.1 orientation in 150 HapMap samples was predicted using this set of SNPs and was verified by FISH in a subset of samples. Four genes (NEIL2, MSRA, CTSB and BLK) were found differentially expressed (p<0.0005) according to the orientation of the 8p23.1 region. Finally, we have found variable levels of mosaicism for the orientation of the 8p23.1 as determined by FISH.

Conclusion

By means of dense SNP genotyping of the region, haplotype-based computational analyses and FISH experiments we could infer and verify the orientation status of alleles in the 8p23.1 region by detecting two short haplotype stretches at both ends of the inverted region, which are likely the relic of the chromosome in which the original inversion occurred. Moreover, an impact of 8p23.1 inversion on gene expression levels cannot be ruled out, since four genes from this region have statistically significant different expression levels depending on the inversion status. FISH results in lymphoblastoid cell lines suggest the presence of mosaicism regarding the 8p23.1 inversion.  相似文献   

12.
Defensins constitute a primary mechanism in the innate immune system of humans and all mammals. Defensins are short, processed peptide molecules that are classified by structure into three groups: alpha-defensins, beta-defensins and theta-defensins. In humans, four beta-defensins have been described so far, corresponding to the products of the genes DEFB1 (hBD1, NM_005218), DEFB4 (hBD2, NM_004942.2), DEFB103 (hBD3, NM_018661), and DEFB104 (hBD4, NM_080389), respectively. All these genes have been mapped to chromosome 8p22-23. Much interest has been shown in genetic variation in the population at defensin loci to understand individual differences in disease susceptibility and severity. In this study, we have used an electronic search and then fluorescence in situ hybridization (FISH) on elongated chromosomes to demonstrate that the region containing the DEFB4 gene is duplicated on human chromosome 8p, making difficult the discovery of new SNPs in this gene and compromising the assessment of their allelic distribution in various ethnic populations for disease association studies.  相似文献   

13.
The capital city of Prague is one of the most polluted localities of the Czech Republic. Therefore, the effect of exposure to carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) adsorbed onto respirable air particles (<2.5 μm) on chromosomal aberrations was studied in a group of policemen (males, aged 22–50 years) working in the downtown area of Prague and spending daily >8 h outdoors (N = 53). Age- and sex-matched healthy volunteers spending > 90% daily time indoors were chosen as controls (N = 52). Ambient air particles (PM10, PM2.5) and c-PAHs were monitored using versatile air pollution sampler (VAPS), and personal exposure was evaluated using personal samplers during working shift. Chromosomal aberrations were analyzed by conventional cytogenetic analysis and fluorescent in situ hybridization (FISH). Urinary cotinine plasma levels of vitamins A, E and C, folate, total cholesterol, HDL, LDL cholesterols and triglycerides were also analyzed as possible effect modifiers. Genotypes CYP1A1*2A, CYP1A1*2C, GSTM1, GSTP1, GSTT1, EPHX1, NAT2, hOGG1, XRCC1, XPD, p53 BstI, p53 MspI, MTHFR677, and MS2656 were determined by PCR-based RFLP assays. The following levels of air pollution were recorded during the study period (mean from HiVol sampling): PM10 62.6 μg/m3, c-PAHs 24.7 ng/m3, B[a]P 3.50 ng/m3. The conventional cytogenetic analysis did not reveal any differences between the group of policemen exposed to the ambient air pollution and the control group. The cytogenetic analysis by FISH analysis used the whole chromosome painting probes for chromosomes #1 and #4 (Cambio, UK). It detected a significant increase in all studied endpoints in the policemen compared to controls (% AB.C. = 0.33 ± 0.25 versus 0.24 ± 0.18, p < 0.05, FG/100 = 1.72 ± 1.57 versus 1.25 ± 1.11, p < 0.05, AB/1000 (aberrations/1000 cells) = 5.58 ± 4.62 versus 3.90 ± 3.06, p < 0.05). CYP1A1*2C (Ile/Ile), XPD 23 (Lys/Lys), and XPD 6 (CC) genotypes were associated with an increase of aberrant cells by conventional method. Factors associated with an increased level of translocations by FISH included age, smoking, B[a]P-like DNA adducts (corresponding to the exposure of c-PAHs), folate, polymorphisms of CYP1A1*2C, GSTP1, EPHX1, p53 MspI and MTHFR. Ambient air exposure to c-PAHs significantly increased FISH cytogenetic parameters in nonsmoking policemen. We may conclude that FISH indicates that the city policemen in Prague represent a group of increased genotoxic risk. This is the first study that has reported a relationship between DNA adducts (biomarker of exposure) and chromosomal aberrations by FISH (biomarker of effect).  相似文献   

14.
Arylamine N-acetyltransferases (NATs) are polymorphic enzymes mediating the biotransformation of arylamine/arylhydrazine xenobiotics, including pharmaceuticals and environmental carcinogens. The NAT1 and NAT2 genes, and their many polymorphic variants, have been thoroughly studied in humans by pharmacogeneticists and cancer epidemiologists. However, little is known about the function of NAT homologues in other primate species, including disease models. Here, we perform a comparative functional investigation of the NAT2 homologues of the rhesus macaque and human. We further dissect the functional impact of a previously described rhesus NAT2 gene polymorphism, causing substitution of valine by isoleucine at amino acid position 231. Gene constructs of rhesus and human NAT2, bearing or lacking non-synonymous polymorphism c.691G>A (p.Val231Ile), were expressed in Escherichia coli for comparative enzymatic analysis against various NAT1- and NAT2-selective substrates. The results suggest that the p.Val231Ile polymorphism does not compromise the stability or overall enzymatic activity of NAT2. However, substitution of Val231 by the bulkier isoleucine appears to alter enzyme substrate selectivity by decreasing the affinity towards NAT2 substrates and increasing the affinity towards NAT1 substrates. The experimental observations are supported by in silico modelling localizing polymorphic residue 231 close to amino acid loop 125–129, which forms part of the substrate binding pocket wall and determines the substrate binding preferences of the NAT isoenzymes. The p.Val231Ile polymorphism is the first natural polymorphism demonstrated to affect NAT substrate selectivity via this particular mechanism. The study is also the first to thoroughly characterize the properties of a polymorphic NAT isoenzyme in a non-human primate model.  相似文献   

15.
16.
The structural rearrangement in the short arm of a chromosome 8 in a clinically affected patient has been reinvestigated by FISH using whole chromosome painting and region specific YAC probes. An inverted duplication of the segment p22-->p11.2 and a deletion of the subtelomeric region were demonstrated. By this approach, a more detailed resolution of the duplication/deletion 8p was possible. With the application of molecular cytogenetic methods the existence of different duplication segments within the clinical entity of duplication/deficiency 8p can be shown.  相似文献   

17.
We describe a 3-year-old girl with severe delays in mental and motor skills, a history of generalized seizures, and subtle dysmorphic features. Conventional cytogenetics revealed a mosaic karyotype. A de novo ectopic NOR at the telomeric region of the short arm of one chromosome 8 (8ps) was found in 90% of lymphocyte and in 98% of fibroblast metaphases. A small NOR-bearing marker chromosome and a large derivative chromosome 8 without short arm satellites (der(8)) were present in the remaining cells. FISH with a probe specific for centromeres 14 and 22 labeled both the telomeric region of 8ps and the small marker centromere. Der(8) included an inverted duplication of 8p and a rearranged duplication of 8q but lacked a second centromere. A subtelomeric probe for 8p revealed a cryptic deletion in 8ps and der(8). Thus, the karyotype represents a combination of submicroscopic partial monosomy 8pter and mosaic trisomy 8.  相似文献   

18.
We describe a female patient with a small supernumerary marker chromosome (sSMC) present in mosaic and characterized in detail by fluorescence in situ hybridization (FISH) using all 24 human whole chromosome painting probes, multicolor banding (MCB) and subcentromere specific multicolor FISH (subcenM-FISH). The sSMC was demonstrated to be derived from chromosome 5 and the karyotype of our patient was as follows: 47,XX,+mar.ish r(5)(::p13.2 approximately p13.3-->q11.2::) [60%]/46,XX [40%]. Partial trisomy for the proximal 5p and q chromosomal regions is a rare event. A critical region exists at 5p13 for the phenotype associated with duplication 5p. As far as we know, eight similar cases have been published up to now. We describe a new case which, to our knowledge, is the first characterized in such detail. The role of uniparental disomy (UPD) in cases of SMC is also discussed.  相似文献   

19.
We describe the clinical case of a nine-year-old boy with psychomotor retardation and a small supernumerary marker chromosome (sSMC) present in mosaic form. Fluorescence in situ hybridization (FISH) using centromere cross-hybridizing probes D1/5/19Z (pZ5.1), the whole chromosome paint probe 19, pool YACs19p (839B1, 872G3, 728C8), and pool YACs19q (767C4, 761C1, 786G6) demonstrated that the sSMC was derived from chromosome 19p. Based on GTG-banding and FISH analyses, the patient's karyotype was interpreted as: 47,XY,+mar.ish der(19) (:p13.3-->p11:)(839B1+, 872G3+,728C8+, D1/5/19Z+) de novo[52]/46,XY[48]. To our knowledge, only two other similar cases have been reported. This case helps to better delineate karyotype-phenotype correlations between sSMC 19p and associated clinical phenomena.  相似文献   

20.
The human N-acetyltransferase genes NAT1 and NAT2 encode two phase-II enzymes that metabolize various drugs and carcinogens. Functional variability at these genes has been associated with adverse drug reactions and cancer susceptibility. Mutations in NAT2 leading to the so-called slow-acetylation phenotype reach high frequencies worldwide, which questions the significance of altered acetylation in human adaptation. To investigate the role of population history and natural selection in shaping NATs variation, we characterized genetic diversity through the resequencing and genotyping of NAT1, NAT2, and the pseudogene NATP in a collection of 13 different populations with distinct ethnic backgrounds and demographic pasts. This combined study design allowed us to define a detailed map of linkage disequilibrium of the NATs region as well as to perform a number of sequence-based neutrality tests and the long-range haplotype (LRH) test. Our data revealed distinctive patterns of variability for the two genes: the reduced diversity observed at NAT1 is consistent with the action of purifying selection, whereas NAT2 functional variation contributes to high levels of diversity. In addition, the LRH test identified a particular NAT2 haplotype (NAT2*5B) under recent positive selection in western/central Eurasians. This haplotype harbors the mutation 341T-->C and encodes the "slowest-acetylator" NAT2 enzyme, suggesting a general selective advantage for the slow-acetylator phenotype. Interestingly, the NAT2*5B haplotype, which seems to have conferred a selective advantage during the past approximately 6,500 years, exhibits today the strongest association with susceptibility to bladder cancer and adverse drug reactions. On the whole, the patterns observed for NAT2 well illustrate how geographically and temporally fluctuating xenobiotic environments may have influenced not only our genome variability but also our present-day susceptibility to disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号