首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome 7E from Lophopyrum ponticum carries a valuable leaf rust resistant gene designated Lr19. This gene has not been widely used in common wheat breeding because of linkage with the yellow pigment gene Y. This gene tints flour yellow, reducing its appeal in bread making. However, a high level of yellow pigment is desirable in durum wheat breeding. We produced 97 recombinant chromosomes between L. ponticum transfer 7D.7E#1 and its wheat homoeologues, using the ph1b mutation that promotes homoeologous pairing. We characterized a subset of 37 of these lines with 11 molecular markers and evaluated their resistance to leaf rust and the abundance of yellow pigment. The Lr19 gene was mapped between loci Xwg420 and Xmwg2062, whereas Y was mapped distal to Xpsr687, the most distal marker on the long arm of chromosome 7. A short terminal 7EL segment translocated to 7A, including Lr19 and Y (line 1-23), has been transferred to durum wheat by backcrossing. The presence of this alien segment significantly increased the abundance of yellow pigment. The Lr19 also conferred resistance to a new durum leaf rust race from California and Mexico that is virulent on most durum wheat cultivars. The new durum lines with the recombinant 7E segment will be useful parents to increase yellow pigment and leaf rust resistance in durum wheat breeding programs. For the common wheat breeding programs, we selected the recombinant line 1-96, which has an interstitial 7E segment carrying Lr19 but not Y. This recombinant line can be used to improve leaf rust resistance without affecting flour color. The 7EL/7DL 1-96 recombinant chromosome did not show the meiotic self-elimination previously reported for a 7EL/7BL translocation.  相似文献   

2.
The resistance (R) proteins of the TIR- and non-TIR (or CC-) superfamilies possess a nucleotide binding site (NBS) domain. Within an R gene, the NBS is the region of highest conservation, suggesting an essential role in triggering R protein activity. We compared the NBS domain of functional R genes and resistance gene analogs (RGA) amplified from S. caripense genomic DNA via PCR using specific and degenerate primers with its counterpart from other plants. An overall high degree of sequence conservation was apparent throughout the P-loop, kinase-2 and kinase-3a motifs of NBS fragments from all plants. Within the non-TIR class of R genes a prominent sub-class similar to the potato R1 gene conferring resistance to late blight, was detected. All non-TIR-R1-like R gene fragments that were sequenced possessed an intact open reading frame, whereas 22% of all non-TIR-non-R1-like fragments and 59% of all TIR-NBS RGA fragments had an interrupted reading frame or contained transposon-specific sequence. The non-TIR-R1-like fragments had high similarity to Solanaceae R genes and low similarity to RGAs of other plant species including A. thaliana and the cereals. It is concluded that appearance of the non-TIR-R1-like NBS domain represents a relatively recent evolutionary development. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

3.
Leaf rust, caused by Puccinia triticina Eriks., is an important foliar disease of common wheat (Triticum aestivum L.) worldwide. Pyramiding several major rust-resistance genes into one adapted cultivar is one strategy for obtaining more durable resistance. Molecular markers linked to these genes are essential tools for gene pyramiding. The rust-resistance gene Lr41 from T. tauschii has been introgressed into chromosome 2D of several wheat cultivars that are currently under commercial production. To discover molecular markers closely linked to Lr41, a set of near-isogenic lines (NILs) of the hard winter wheat cultivar Century were developed through backcrossing. A population of 95 BC3F2:6 NILs were evaluated for leaf rust resistance at both seedling and adult plant stages and analyzed with simple sequence repeat (SSR) markers using bulked segregant analysis. Four markers closely linked to Lr41 were identified on chromosome 2DS; the closest marker, Xbarc124, was about 1 cM from Lr41. Physical mapping using Chinese Spring nullitetrasomic and ditelosomic genetic stocks confirmed that markers linked to Lr41 were on chromosome arm 2DS. Marker analysis in a diverse set of wheat germplasm indicated that primers BARC124, GWM210, and GDM35 amplified polymorphic bands between most resistant and susceptible accessions and can be used for marker-assisted selection in breeding programs.  相似文献   

4.
Comparative study of disease resistance genes in crop plants and their relatives provides insight on resistance gene function, evolution and diversity. Here, we studied the allelic diversity of the Lr10 leaf rust resistance gene, a CC‐NBS‐LRR coding gene originally isolated from hexaploid wheat, in 20 diploid and tetraploid wheat lines. Besides a gene in the tetraploid wheat variety ‘Altar’ that is identical to the hexaploid wheat Lr10, two additional, functional resistance alleles showing sequence diversity were identified by virus‐induced gene silencing in tetraploid wheat lines. In contrast to most described NBS‐LRR proteins, the N‐terminal CC domain of LR10 was found to be under strong diversifying selection. A second NBS‐LRR gene at the Lr10 locus, RGA2, was shown through silencing to be essential for Lr10 function. Interestingly, RGA2 showed much less sequence diversity than Lr10. These data demonstrate allelic diversity of functional genes at the Lr10 locus in tetraploid wheat, and these new genes can now be analyzed for agronomic relevance. Lr10‐based resistance is highly unusual both in its dependence on two, only distantly, related CC‐NBS‐LRR proteins, as well as in the pattern of diversifying selection in the N‐terminal domain. This indicates a new and complex molecular mechanism of pathogen detection and signal transduction.  相似文献   

5.
Leaf rust, caused by Puccinia triticina, is one of the most damaging diseases of wheat worldwide. Lr16 is a widely deployed leaf rust resistance gene effective at the seedling stage. Although virulence to Lr16 exists in the Canadian P. triticina population, Lr16 provides a level of partial resistance in the field. The primary objective of this study was to identify markers linked to Lr16 that are suitable for marker-assisted selection (MAS). Lr16 was tagged with microsatellite markers on the distal end of chromosome 2BS in three mapping populations. Seven microsatellite loci mapped within 10 cM of Lr16, with the map distances varying among populations. Xwmc764 was the closest microsatellite locus to Lr16, and mapped 1, 9, and 3 cM away in the RL4452/AC Domain, BW278/AC Foremost, and HY644/McKenzie mapping populations, respectively. Lr16 was the terminal locus mapped in all three populations. Xwmc764, Xgwm210, and Xwmc661 were the most suitable markers for selection of Lr16 because they had simple PCR profiles, numerous alleles, high polymorphism information content (PIC), and were tightly linked to Lr16. Twenty-eight spring wheat lines were evaluated for leaf rust reaction with the P. triticina virulence phenotypes MBDS, MBRJ, and MGBJ, and analyzed with five microsatellite markers tightly linked to Lr16. There was good agreement between leaf rust infection type (IT) data and the microsatellite allele data. Microsatellite markers were useful for postulating Lr16 in wheat lines with multiple leaf rust resistance genes.  相似文献   

6.
Wheat leaf rust (Puccinia triticina) is becoming a serious concern in Spanish wheat, especially on durum wheat where acreage has enormously increased. Host resistance is the preferred method of disease control, but the virulence spectrum of the leaf rust population in Spain is currently unknown. In order to deploy effective Lr genes, this study was conducted to characterize the virulence spectrum of leaf rust in Andalusia (Spain). Isolates were obtained from surveys of wheat fields across Andalusia from 1998 to 2000. From 56 isolates phenotyped, 35 pathotypes were identified. Virulence to Lr10, Lr11, Lr14a, Lr14b and Lr18 was high (>96%), while virulence to Lr9 and Lr24 were not found. None of the isolates collected from durum wheat were virulent to Lr1, Lr3, Lr3ka, Lr3bg, Lr15, Lr16 and Lr17, while many of the isolates collected on bread wheat showed virulence on these genes, indicating a certain specialization in the leaf rust infecting durum wheat. Population dynamics of current wheat leaf rust pathotypes in terms of mutation and migration are discussed.  相似文献   

7.
In hexaploid wheat, leaf rust resistance gene Lr1 is located at the distal end of the long arm of chromosome 5D. To clone this gene, an F1-derived doubled haploid population and a recombinant inbred line population from a cross between the susceptible cultivar AC Karma and the resistant line 87E03-S2B1 were phenotyped for resistance to Puccinia triticina race 1-1 BBB that carries the avirulence gene Avr1. A high-resolution genetic map of the Lr1 locus was constructed using microsatellite, resistance gene analog (RGA), BAC end (BE), and low pass (LP) markers. A physical map of the locus was constructed by screening a hexaploid wheat BAC library from cultivar Glenlea that is known to have Lr1. The locus comprised three RGAs from a gene family related to RFLP marker Xpsr567. Markers specific to each paralog were developed. Lr1 segregated with RGA567-5 while recombinants were observed for the other two RGAs. Transformation of the susceptible cultivar Fielder with RGA567-5 demonstrated that it corresponds to the Lr1 resistance gene. In addition, the candidate gene was also confirmed by virus-induced gene silencing. Twenty T 1 lines from resistant transgenic line T 0-938 segregated for resistance, partial resistance and susceptibility to Avr1 corresponding to a 1:2:1 ratio for a single hemizygous insertion. Transgene presence and expression correlated with the phenotype. The resistance phenotype expressed by Lr1 seemed therefore to be dependant on the zygosity status. T 3-938 sister lines with and without the transgene were further tested with 16 virulent and avirulent rust isolates. Rust reactions were all as expected for Lr1 thereby providing additional evidence toward the Lr1 identity of RGA567-5. Sequence analysis of Lr1 indicated that it is not related to the previously isolated Lr10 and Lr21 genes and unlike these genes, it is part of a large gene family. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. The Canadian Crown's right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

8.
The leaf rust resistance gene Lr19 and Fusarium head blight (FHB) resistance quantitative trait loci (QTL) derived from the wild wheatgrass Lophopyrum ponticum have been located on chromosome 7E. The main objectives of the present study were to develop a genetic map of chromosome 7E and map the two resistance loci using a population of 237 F7:8 recombinant inbred lines (RILs) derived from a cross between two Thatcher-L. ponticum substitution lines, K11463 (7el1(7D)) and K2620 (7el2(7D)). 532 G-SSR, E-SSR and STS markers from wheat chromosome group 7 were screened in the parent lines. Of these, 118 markers were polymorphic, with a polymorphism frequency of 22.2%. A genetic map of L. ponticum chromosome 7E was constructed with 64 markers, covering 95.76 cM, with an average genetic distance of 1.47 cM between markers. The major FHB resistance locus, temporarily assigned as FhbLoP, was mapped to the very distal region of the long arm of chromosome 7E within a 3.71 cM interval flanked by Xcfa2240 and Xswes19, which accounts for 30.46% of the phenotypic variance. Lr19 was bracketed by Xwmc273 and XBE404744, with a map distance of 1.54 and 1.43 cM from either side, respectively. The closely linked markers identified in this study will be helpful for marker-assisted introgression of the L. ponticum-derived FhbLoP and Lr19 genes into elite cultivars of wheat, and the development of a genetic map will accelerate the map-based cloning of these two genes.  相似文献   

9.
Near-isogenic lines (NILs) for the leaf rust resistance gene Lr9 were screened for polymorphisms at the molecular level. RAPD (random amplified polymorphic DNA) primers as well as RFLP (restriction fragment length polymorphism) markers were used. Out of 395 RAPD primers tested, three showed polymorphisms between NILs, i.e., an additional band was found in resistant lines. One of these polymorphic bands was cloned and sequenced. Specific primers were synthesized, and after amplification only resistant lines showed an amplified product. Thus, these primers define a sequence-tagged site that is specific for the translocated fragment carrying the Lr9 gene. A cross between a resistant NIL and the spelt (Triticum spelta) variety Oberkulmer was made, and F2 plants were analyzed for genetic linkage. All three polymorphisms detected by the PCR (polymerase chain reaction) and one RFLP marker (cMWG684) showed complete linkage to the Lr9 gene in 156 and 133 plants analyzed, respectively. A second RFLP marker (PSR546) was closely linked (8±2.4 cM) to the Lr9 gene and the other four DNA markers. As this marker maps to the distal part of the long arm of chromosome 6B of wheat, Lr9 and the other DNA markers also map to the distal region of 6BL. All three PCR markers detected the Lr9 gene in independently derived breeding lines and varieties, thus proving their general applicability in wheat breeding programs.  相似文献   

10.
A PCR-based strategy was applied to obtain the DNA sequence of γ-gliadin open reading frames present in line II-12, a derivative from a somatic hybrid between bread wheat (Triticum aestivum L.) cv. Jinan177 and tall wheatgrass (Lophopyrum ponticum, 10×). A total 50 analysable sequences were obtained, 18 from II-12 and 16 each from the parents. Amplicon length ranged from 720 to 936 bp, corresponding to a putative mature protein of 239–309 residues. The primary structure of these putative proteins comprised five domains, of which only two varied in length. Phylogenetic analyses showed that the mature γ-gliadin sequences fell into four major clades. Group 1 contained sequences shared between II-12 and L. ponticum, suggesting that some L. ponticum γ-gliadin genes are present in the introgression line. Group 3 has five Jinan177 and five II-12 sequences, indicating that II-12 also carries wheat versions of Gli-1. Group 2 and 4 comprised four and two II-12, three and one Jinan177 as well as one and four L. ponticum sequences, respectively. Fewer genes encoding coeliac disease epitopes were present in II-12 than in the wheat donor parent. Three II-12 γ-gliadins and one from the wheat parent contained an odd number of cysteine residues, and two of them had an additional cysteine residue at the amino end of domain V. The possible use of II-2 for improving quality of bread wheat is discussed.  相似文献   

11.
The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad‐spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field‐grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome‐encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up‐regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress‐response genes were up‐regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad‐spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat.  相似文献   

12.
为深入研究NBS-LRR基因在川西云杉(Picea balfouriana)抗落针病过程中的分子作用机制,该研究根据GenBank数据库中其他植物NBS-LRR基因保守序列设计引物,利用RT-PCR技术,克隆云杉NBS-LRR基因全长cDNA序列(PbNBS-LRR),分析该基因及其编码蛋白的相关信息并进行基因表达研究。结果表明:(1)成功获得PbNBS-LRR基因的全长2 616 bp(基因登录号:MK044348),且包含一个2 508 bp的完整阅读框(ORF),共编码836个氨基酸,其氨基酸序列具有NBS-LRR类抗病基因典型的NB-ARC结构域和LRR结构域。(2)云杉PbNBS-LRR与北美云杉(Picea sitchensis)NBS-LRR类抗病蛋白相似性最高,达到98%;分子进化分析进一步表明,PbNBS-LRR与北美云杉NBS-LRR亲缘关系最近,其次为糖松(Pinus lambertiana)和火炬松(Pinus taeda)。(3)qRT-PCR分析表明,NBS-LRR基因在川西云杉、粗枝云杉(Picea asperata)和丽江云杉(Picea likiangensis)的根、树干韧皮部、嫩枝及针叶中均有表达,在川西云杉和粗枝云杉的根部以及丽江云杉的树干韧皮部中表达量最高;在落针病病原菌侵染川西云杉和粗枝云杉的初期(5月)以及丽江云杉的后期(9月),NBS-LRR基因的表达量最高,分别为对照的1.73倍、2.11倍和90.49倍,表明NBS-LRR基因参与了云杉落针病的防御反应。  相似文献   

13.
Lr1 is a dominant leaf rust resistance gene located on chromosome 5DL of bread wheat and the wild species Aegilops tauschii. In this study, three polymorphic markers (WR001, WR002, and WR003) were developed from resistance gene analogs (RGAs) clustering around the Lr1 locus. Using these and other markers, Lr1 was mapped to a genetic interval of 0.79 cM in Ae. tauschii and 0.075 cM in wheat. The CAPS marker WR003, derived from LR1RGA1, co-segregated with Lr1 in both mapping populations of wheat and Ae. tauschii. For isolation of Lr1, two genomic BAC libraries (from Ae. tauschii and hexaploid wheat) were screened using the tightly flanking marker PSR567F and a set of nested primers derived from the conserved region of the RGA sequences. Approximately 400 kb BAC contig spanning the Lr1 locus was constructed. The LR1RGA1 encoding a CC-NBS-leucine-rich repeat (LRR) type of protein was the only one of the four RGAs at the Lr1 locus, which co-segregated with leaf rust resistance. Therefore, it represents a very good candidate for Lr1. The allelic sequences of LR1RGA1 from resistant and susceptible lines revealed a divergent DNA sequence block of ∼605 bp encoding the LRR repeats 9–15, whereas the rest of the sequences were mostly identical. Within this sequence block, the 48 non-synonymous changes resulted in 44 amino acid differences. This indicates that LR1RGA1 likely evolved through one or more recombination or gene conversion events with unknown genes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The leaf rust resistance gene, Lr18, of common wheat cultivars has been derived from Triticum timopheevi and is located on chromosome arm 5BL. Chromosome banding (N-banding) analyses revealed that in the wheat cultivars carrying Lr18 that were examined, which had been bred in 6 different countries, chromosome arm 5BL possessed a specific terminal band not carried by their susceptible parental cultivars. It was suggested that this terminal N-band was introduced from T. timopheevi together with Lr18. N-banding analysis of a T. timopheevi strain showed that one of two timopheevi chromosomes had provided Japanese wheat lines containing Lr18 with the terminal band.  相似文献   

15.
Twenty-five partial amphiploids (2n=8x=56), which were derived from hybrids of wheat (Triticum aestivum L.) with either Thinopyrum ponticum (Podpera) Liu & Wang, Th. intermedium (Host) Barkworth & D. Dewey, or Th. junceum (L.) A. Löve, were assayed for resistance to BYDV serotype PAV by slot-blot hybridization with viral cDNA of a partial coat protein gene. Three immune lines were found among seven partial amphiploids involving Th. ponticum. Seven highly resistant lines were found in ten partial amphiploids involving Th. intermedium. None of eight partial amphiploids or 13 addition lines of Chinese Spring — Th. junceum were resistant to BYDV. Genomic in situ hybridization demonstrated that all of the resistant partial amphiploids, except TAF46, carried an alien genome most closely related to St, whether it was derived from Th. ponticum or Th. intermedium. The two partial amphiploids carrying an intact E genome of Th. ponticum are very susceptible to BYDV-PAV. In TAF46, which contains three pairs of St- and four pairs of E-genome chromo somes, the gene for BYDV resistance has been located to a modified 7 St chromosome in the addition line L1. This indicates that BYDV resistance in perennial polyploid parents, i.e., Th. ponticum and Th. intermedium, of these partial amphiploids is probably controlled by a gene(s) located on the St-genome chromosome(s).  相似文献   

16.
Rusts and barley yellow dwarf virus (BYDV) are among the main diseases affecting wheat production world wide for which wild relatives have been the source of a number of translocations carrying resistance genes. Nevertheless, along with desirable traits, alien translocations often carry deleterious genes. We have generated recombinants in a bread wheat background between two alien translocations: TC5, ex-Thinopyrum (Th) intermedium, carrying BYDV resistance gene Bdv2; and T4m, ex-Th. ponticum, carrying rust resistance genes Lr19 and Sr25. Because both these translocations are on the wheat chromosome arm 7DL, homoeologous recombination was attempted in the double hemizygote (TC5/T4m) in a background homozygous for the ph1b mutation. The identification of recombinants was facilitated by the use of newly developed molecular markers for each of the alien genomes represented in the two translocations and by studying derived F2, F3 and doubled haploid populations. The occurrence of recombination was confirmed with molecular markers and bioassays on families of testcrosses between putative recombinants and bread wheat, and in F2 populations derived from the testcrosses. As a consequence it has been possible to derive a genetic map of markers and resistance genes on these previously fixed alien linkage blocks. We have obtained fertile progeny carrying new tri-genomic recombinant chromosomes. Furthermore we have demonstrated that some of the recombinants carried resistance genes Lr19 and Bdv2 yet lacked the self-elimination trait associated with shortened T4 segments. We have also shown that the recombinant translocations are fixed and stable once removed from the influence of the ph1b. The molecular markers developed in this study will facilitate selection of individuals carrying recombinant Th. intermediumTh. ponticum translocations (Pontin series) in breeding programs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
A low-copy, non-coding chromosome-specific DNA sequence, isolated from common wheat, was physically mapped to the distal 19% region of the long arm of chromosome 3B (3BL) of common wheat. This sequence, designated WPG118, was then characterized by Southern hybridization, PCR amplification and sequence comparison using a large collection of polyploid wheats and diploid Triticum and Aegilops species. The data show that the sequence exists in all polyploid wheats containing the B genome and absent from those containing the G genome. At the diploid level, it exists only in Ae. searsii, a diploid species of section Sitopsis, and not in other diploids including Ae. speltoides, the closest extant relative to the donor of the B genome of polyploid wheat. This finding may support the hypothesis that the B-genome of polyploid wheat is of a polyphyletic origin, i.e. it is a recombined genome derived from two or more diploid Aegilops species.  相似文献   

18.
19.
 Following the induction of allosyndetic pairing between the Thinopyrum-derived Lr19 translocation in ‘Indis’ wheat and homoeologous wheat chromatin, eight suspected recombinants for the Lr19 region were recovered. These selections were characterised for marker loci that were previously used to construct a physical map of the Lr19 segment. At the same time near-isogenic lines were developed for some of the selected segments and tested for seedling leaf-rust resistance in order to confirm the presence of Lr19. It appeared that three of the four white-endosperm selections do not possess Lr19 and only one, 88M22-149, is a true Lr19 recombinant. The resistance gene in the three non-Lr19 selections resides on chromosome 6B, appears to derive from ‘Indis’, and was selected unintentionally during backcrossing. The pedigree of ‘Indis’ is suspect and it is believed that the Lr19 translocation in ‘Indis’ is in reality the Th. ponticum-derived (T4) segment rather than being of Th. distichum origin as was believed earlier. The white-endosperm recombinant, 88M22-149, retained the complete Lr19 resistance and was apparently re-located to chromosome arm 7BL in a double-crossover event. 88M22-149 has lost the Sd1 gene and often shows strong self-elimination in translocation heterozygotes. This effect may result from additional gametocidal loci or from an altered chromosome structure following re-location of the segment. 88M22-149 in fact contains a duplicated region involving the Wsp-B1 locus. Three selections had partially white endosperms and expressed Lr19 and other Thinopyrum marker alleles. Polymorphisms for the available markers confirmed that the translocated segment in at least one of them had been shortened through recombination with chromosome arm 7DL. Further markers need to be studied in order to determine whether the translocation in the remaining two partially white recombinants had also undergone recombination with wheat. The eighth selection has yellow endosperm and appears to self-eliminate in certain translocation heterozygotes. No evidence of recombination could be found with the markers used. If the latter selections are in fact recombinants they may prove useful in attempts to unravel the complex segregation distortion mechanism. Received: 8 August 1996 / Accepted: 10 January 1997  相似文献   

20.
Seed storage-protein variation at theGlu-A1,Glu-B1 andGli-B1/Glu-B3 loci in the tetraploid wild progenitor of wheat,T. dicoccoides, was studied electrophoretically in 315 individuals representing nine populations from Jordan and three from Turkey. A total of 44 different HMW-glutenin patterns were identified, resulting from the combination of 15 alleles in the A genome and 19 in the B genome. Twenty-seven new allelic variants, 12 at theGlu-A1 locus and 15 at theGlu-B1 locus, were identified by comparing the mobilities of their subunits to those previously found in bread and durum wheats. The novel variants include six alleles at theGlu-A1 locus showing both x and y subunits. The genes coding for the 1Bx and 1By subunits showed no or very little (3%) inactivity, the 1Ax gene showed a moderate degree (6.3%) of inactivity whereas the gene coding for lAy showed the highest degree of inactivity (84.8%). A high level of polymorphism was also present for the omega- and gamma-gliadins and LMW-glutenin subunits encoded by genes at the linkedGli-B1 andGlu-B3 loci (19 alleles). Some Jordanian accessions were found to contain omega-gliadin 35, gamma-gliadin 45, and LMW-2 also present in cultivated durum wheats and related to good gluten viscoelasticity. The newly-discovered alleles enhance the genetic variability available for improving the technological quality of wheats. Additionally some of them may facilitate basic research on the relationship between industrial properties and the number and functionality of HMW- and LMW-glutenin subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号