首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiocystine (bis[2-amino-2-carboxyethyl]trisulfide) functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. This occurs by formation of a reactive intermediate, thiocysteine (alanine hydrogen disulfide). In the absence of an acceptor sulfur is released in elemental form. Thiocystine is relatively stable in the pH range of 2–9. However, its conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, rhodanese, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Since thiocystine has been detected in biological systems, it is proposed that in provides a storage form of sulfane sulfur. Trisulfides related to thiocystine show qualitatively similar properties.  相似文献   

2.
Summary Changes of the specific activity of 3-mercaptopyruvate sulfurtransferase (MPST), rhodanese and cystathionase in Ehrlich ascites tumor cells (EATC) and tumor-bearing mouse liver after intraperitoneal administration of thiazolidine derivatives, L-cysteine, D,L-methionine, thiocystine or thiosulfate were estimated. Thiazolidine derivatives used were: thiazolidine-4-carboxylic acid (CF), 2-methyl-thiazolidine-2,4-dicarboxylic acid (CP) and 2-methyl-thiazolidine-4-carboxylic acid (CA). In the liver, the activity of MPST was significantly increased by all the studied compounds, whereas the activity of rhodanese was by CF and thiocystine and that of cystathionase was by the administration of cysteine and CP. Un the other hand, cysteine lowered the rhodanese activity and the activity of cystathionase was decreased by the administration of methionine and thiocystine. Activities of MPST and rhodanese were even lower in EATC than those in the liver of tumor-bearing mouse and the activity of cystathionase in EATC was not be detected. The thiazolidine derivatives significantly increased the level of MPST activity in EATC, but decreased the rhodanese activity. Thiosulfate also increased the activity of MPST to a lesser degree, but cysteine, methionine and thiocystine gave little change in the activity. The rhodanese activity in EATC was slightly increased only by thiocystine. These findings suggest that the sulfur metabolism in the tumor-bearing mouse liver is different from that in the normal mouse liver, and that sulfur compounds are minimally metabolized to sulfane sulfur, a labile sulfur, in EATC.  相似文献   

3.
The interaction of the sulfurtransferase rhodanese (EC 2.8.1.1) with succinate dehydrogenase (EC 1.3.99.1), yeast alcohol dehydrogenase (EC 1.1.1.1) and bovine serum albumin was studied. Succinate dehydrogenase incorporates the sulfane sulfur of [35S]rhodanese and, in the presence of unlabelled rhodanese, also incorporates that of [35S]thiosulfate. Rhodanese releases most of its transferable sulfur and is re-loaded in the presence of thiosulfate. Rhodanese undergoes similar modifications with yeast alcohol dehydrogenase but this latter does not bind 35S in amounts comparable to those incorporated in succinate dehydrogenase: nearly all the 35S released by [35S]rhodanese is with low-molecular-weight compounds. Bovine serum albumin also binds very little sulfur and [35S]rhodanese present in the reaction mixture does not discharge its radioactive sulfur nor does it take up sulfur from thiosulfate. Sulfur release from rhodanese appears to depend on the presence of - SH groups in the acceptor protein. Sulfur incorporated into succinate dehydrogenase was analytically determined as sulfide. A comparison of the optical spectra of succinate dehydrogenase preparations incubated with or without rhodanese indicates that there is an effect of the sulfurtransferase on the iron-sulfur absorption of the flavorprotein. The interaction of rhodanese with succinate dehydrogenase greatly decreases the catalytic activity of rhodanese with respect to thiocyanate formation. This is attributed to modifications in rhodanese associated with the reduction of sulfane sulfur to sulfide. Thiosulfate in part protects from this deactivation. The reconstitutive capacity of succinate dehydrogenase increased in parallel with sulfur incorporated in that enzyme following its interaction with rhodanese.  相似文献   

4.
Cyanide is a dreaded chemical because of its toxic properties. Although cyanide acts as a general metabolic inhibitor, it is synthesized, excreted and metabolized by hundreds of organisms, including bacteria, algae, fungi, plants, and insects, as a mean to avoid predation or competition. Several cyanide compounds are also produced by industrial activities, resulting in serious environmental pollution. Bioremediation has been exploited as a possible alternative to chemical detoxification of cyanide compounds, and various microbial systems allowing cyanide degradation have been described. Enzymatic pathways involving hydrolytic, oxidative, reductive, and substitution/transfer reactions are implicated in detoxification of cyanide by bacteria and fungi. Amongst enzymes involved in transfer reactions, rhodanese catalyzes sulfane sulfur transfer from thiosulfate to cyanide, leading to the formation of the less toxic thiocyanate. Mitochondrial rhodanese has been associated with protection of aerobic respiration from cyanide poisoning. Here, the biochemical and physiological properties of microbial sulfurtransferases are reviewed in the light of the importance of rhodanese in cyanide detoxification by the cyanogenic bacterium Pseudomonas aeruginosa. Critical issues limiting the application of a rhodanese-based cellular system to cyanide bioremediation are also discussed.  相似文献   

5.
The bacterial enzyme sulfane sulfurtransferase has been studied using spectroscopic techniques. The enzyme was characterized in terms of its near-UV absorption spectrum, molar ellipticity, intrinsic fluorescence spectra and the effects of general and ionic quenching reagents upon its fluorescence. Fluorescence model studies are consistent with sulfane sulfurtransferase having only a single tryptophan residue, which accounts for its low UV absorption coefficient and suggested that this residue is at least partially exposed to solvent. Second derivative absorption spectroscopy studies revealed that most of the bacterial enzyme's tyrosine residues are exposed to solvent. Unlike the better known sulfurtransferase, bovine liver rhodanese, sulfane sulfurtransferase does not undergo a detectable increase in quantum yield when shifting from the sulfur-containing covalent enzyme intermediate to the free enzyme form (which lacks sulfur) during catalysis. CD studies suggest that sulfane sulfurtransferase has a significantly higher proportion of alpha-helix than rhodanese. The renaturation of sulfane sulfurtransferase denatured in 6 M guanidine was shown to be rapid and complete provided that the enzyme had not been oxidized while in the denatured state. Sulfane sulfurtransferase, like rhodanese, catalyzes the transfer of sulfur from thiosulfate to cyanide via a persulfide intermediate, and displays remarkably similar kinetics in this process (Aird, B.A., Heinrikson, R.L. and Westley, J. (1987) J. Biol. Chem 262, 17327-17335). In light of this, the results of the structural studies with sulfane sulfurtransferase are compared and contrasted to data from similar experiments with rhodanese in hopes that they would provide insight about which phenomena observed with rhodanese are intrinsic to the process of transferring sulfur atoms.  相似文献   

6.
A study was made on the effects of DL-dihydrolipoate, lipoate and iron-sulfur proteins on the activity of rhodanese (EC 2.8.1.1) with dihydrolipoate or cyanide as acceptors. DL-Dihydrolipoate inactivates rhodanese, lipoate does not, and the opposite occurs with the sulfur-free form of the transferase. The observed effects vary with the sulfane sulfur acceptor from rhodanese (i.e., dihydrolipoate or cyanide) and depend on intramolecular oxidation of the catalytic sulfhydryl or on formation of a mixed disulfide with dihydrolipoate. Thiosulfate protects against inactivation by reloading the active-site cysteine with persulfide sulfur. The inhibition of sulfur transfer by iron-sulfur proteins appears related to the amount of native iron-sulfur structure interacting with rhodanese. The implications of the results for a possible biological role of rhodanese are considered.  相似文献   

7.
The inorganic sulfane tetrathionate (-O3SSSSO3-) resembles glutathione trisulfide (GSSSG) in that it remarkably activates the reduction of cytochrome c by GSH, both under aerobic and anaerobic conditions. These observations can be explained by the formation of the persulfide GSS-, due to nucleophilic displacements of sulfane sulfur. The GSS- species has previously been proposed to act as a chain carrier in the catalytic reduction of cytochrome c, and perthiyl radicals GSS·, formed in the reduction step, were thought to recycle to sulfane via dimerization to GSSSSG.2 The present study provides some arguments in favour of a chain mechanism involving the GSS· + GS- ⇄ (GSSSG)- equilibrium and sulfane regeneration by a second electron transfer from (GSSSG)· - to cytochrome c.

Thiosulfate sulfurtransferase (rhodanese) is shown to act as a cytochrome c reductase in the presence of thiosulfate and GSH, and again the generation of GSS- can be envisaged to explain this result.  相似文献   

8.
The dansyl derivative 5-dimethylamino-1-naphthalene thiosulfonate (DANTS) can serve as a sulfane sulfur-donor substrate for several of the sulfurtransferases, the reaction being dependent on the acceptor substrates supplied. Enzymatic cleavage of the sulfur-sulfur bond of DANTS releases the intrinsic fluorescence of the molecule, with an emission maximum of 500-510 nm (excitation at 325 nm). This process permits selective visualization of active sulfurtransferase enzymes separated in nondenaturing polyacrylamide gels, even from impure preparations. This technique was used to locate rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1), thiosulfate reductase (EC unassigned), and a recently isolated prokaryotic enzyme that has been called sulfane sulfurtransferase. In addition, a refinement of the thiosulfate reductase assay technique is reported.  相似文献   

9.
A sulfurtransferase has been purified to apparent homogeneity from the prokaryote Acinetobacter calcoaceticus lwoffi by conventional protein fractionation techniques. Steady-state kinetic studies of the enzyme revealed that its formal mechanism varies with the acceptor substrate employed. With inorganic thiosulfate as the sulfane sulfur-donor substrate and cyanide anion as the acceptor, the enzyme was shown to catalyze the reaction by a double displacement mechanism like that of mammalian rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1). In contrast, with a thiol as the acceptor substrate at relatively high concentrations, the reaction proceeds by a single displacement mechanism, reminiscent of catalysis by another sulfur-transferase, thiosulfate reductase, glutathione-dependent (EC 2.8.1.3). When dithiothreitol is the acceptor substrate, the enzyme cycles through both the single and double displacement pathways, with the flux through each depending differentially on the concentration of dithiothreitol employed. In view of both the relaxed acceptor substrate specificity and the corresponding variability of formal mechanism, the more general name of sulfane sulfurtransferase is proposed for this bacterial enzyme.  相似文献   

10.
Properties of an Escherichia coli rhodanese   总被引:2,自引:0,他引:2  
A rhodanese enzyme of less than 20,000 molecular weight has been purified from Escherichia coli. The enzyme is accessible to substrates upon addition of whole cells to standard assay mixtures. This rhodanese has a Stokes radius of 17 A which for a globular protein corresponds to a molecular weight close to 14,000. It undergoes autoxidation to a polymeric form which is probably an inert dimer. Enzyme inactivated by oxidation can be reactivated by millimolar concentrations of cysteine. Steady-state initial velocity measurements indicate that the enzyme catalyzes the transfer of sulfane sulfur by way of a double displacement mechanism with formation of a covalent enzyme-sulfur intermediate. The turnover number for the enzyme-catalyzed reaction, with thiosulfate as donor substrate and cyanide ion as the sulfur acceptor, is 260 s-1. This value corresponds to a catalytic efficiency 60% of that measured for a previously characterized bovine liver enzyme of more than twice the molecular weight. Furthermore, KmCN is 24 mM which is 2 orders of magnitude higher than the value observed previously for the bovine enzyme. Evidence from chemical inactivation studies implicates an essential sulfhydryl group in the enzyme activity. It is proposed that this group is the site of substrate-sulfur binding in the obligatory enzyme-sulfur intermediate. Furthermore, a cationic site important for binding of the donor thiosulfate is tentatively identified from anion inhibition studies. Tests of alternate acceptor substrates indicate that the physiological dithiol, dihydrolipoate, is a more efficient acceptor than cyanide ion for the enzyme-bound sulfur. Of possibly greater physiological significance, it has been found that the enzyme catalyzes the formation of iron-sulfur centers. Other work indicates the E. coli rhodanese is subject to catabolite repression and suggests a physiological role for the enzyme in aerobic energy metabolism.  相似文献   

11.
Thiobacillus denitrificans strain RT could be grown anaerobically in batch culture on thiosulfate but not on other reduced sulfur compounds like sulfide, elemental sulfur, thiocyanate, polythionates or sulfite. During growth on thiosulfate the assimilated cell sulfur was derived totally from the outer or sulfane sulfur. Thiosulfate oxidation started with a rhodanese type cleavage between sulfane and sulfone sulfur leading to elemental sulfur and sulfite. As long as thiosulfate was present elemental sulfur was transiently accumulated within the cells in a form that could be shown to be more reactive than elemental sulfur present in a hydrophilic sulfur sol, however, less reactive than sulfane sulfur of polythionates or organic and inorganic polysulfides. When thiosulfate had been completely consumed, intracellular elemental sulfur was rapidly oxidized to sulfate with a specific rate of 45 natom S°/min·mg protein. Extracellularly offered elemental sulfur was not oxidized under anaerobic conditions.  相似文献   

12.
Bovine liver rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) was prepared in dilute solutions and subjected to conditions that led to a time-dependent loss of enzyme activity. The rate of this activity loss was found to be dependent upon the sulfur substitution state of the enzyme, and the presence or absence of the substrates, thiosulfate and cyanide. In the absence of excess substrates, free enzyme (E), and the covalent intermediate form of the enzyme bearing a divalent sulfur atom in the active site (ES), are of approximately equal functional stability. In comparison, E, in the presence of excess cyanide, was markedly more labile, while ES, supported by 10-50 mM thiosulfate, showed no significant loss of activity under any of the conditions tested. All the enzyme solutions were shown to be losing assayable protein from solution. However, it was demonstrated that, for rhodanese in the E form, the amount of protein lost was insufficient to account for the activity lost, and a marked decline in specific activity was observed. Enzyme in the ES form, whether supported by additional thiosulfate or not, did not decline in the specific activity, though comparable protein loss did occur from these solutions. Intrinsic fluorescence measurements of rhodanese in the ES form, before and after removal of the persulfide sulfur through the addition of cyanide, indicated that loss of enzymic activity was not accompanied by loss of the bound sulfur atom. Therefore, the stabilizing effect observed with thiosulfate could not be explained simply by its ability to maintain enzyme in the sulfur-substituted state. Since the concentration of thiosulfate employed in these experiments was insufficient to maintain all the enzyme in ES.S2O3 form, thiosulfate was acting as a chemical reagent rather than a substrate in stabilizing enzyme activity.  相似文献   

13.
Rhodanese is a component of the mitochondrial H2S oxidation pathway. Rhodanese catalyzes the transfer of sulfane sulfur from glutathione persulfide (GSSH) to sulfite generating thiosulfate and from thiosulfate to cyanide generating thiocyanate. Two polymorphic variations have been identified in the rhodanese coding sequence in the French Caucasian population. The first, 306A→C, has an allelic frequency of 1% and results in an E102D substitution in the encoded protein. The second polymorphism, 853C→G, has an allelic frequency of 5% and leads to a P285A substitution. In this study, we have examined differences in the stability between wild-type rhodanese and the E102D and P285A variants and in the kinetics of the sulfur transfer reactions. The Asp-102 and Ala-285 variants are more stable than wild-type rhodanese and exhibit kcat/Km,CN values that are 17- and 1.6-fold higher, respectively. All three rhodanese forms preferentially catalyze sulfur transfer from GSSH to sulfite, generating thiosulfate and glutathione. The kcat/Km,sulfite values for the variants in the sulfur transfer reaction from GSSH to sulfite were 1.6- (Asp-102) and 4-fold (Ala-285) lower than for wild-type rhodanese, whereas the kcat/Km,GSSH values were similar for all three enzymes. Thiosulfate-dependent H2S production in murine liver lysate is low, consistent with a role for rhodanese in sulfide oxidation. Our studies show that polymorphic variations that are distant from the active site differentially modulate the sulfurtransferase activity of human rhodanese to cyanide versus sulfite and might be important in differences in susceptibility to diseases where rhodanese dysfunction has been implicated, e.g. inflammatory bowel diseases.  相似文献   

14.
Cysteine is taken up by the squid giant axon to about 200% of equivalent distribution, whereas sulfide is taken up (probably as hydrogen sulfide) to about 40% of equivalence. Thereafter, the squid axon synthesizes its major anion, isethionate, in about equal amounts from the sulfide, or from the sulfur of cysteine, but not at all from the carbons of cysteine. Squid nerve also contains rhodanese, an enzyme which transfers the outer (sulfane) sulfur of thiosulfate to cyanide to produce thiocyanate. It is speculated that, instead of “detoxifying cyanide,” as the reaction involving rhodanese is commonly described, the physiological role of this enzyme is the formation of a carbon-sulfur bond, leading finally, in the squid, to the formation of isethionate. This is the first evidence concerning the pathway for the synthesis of isethionate in squid nerve where this compound is normally present at a concentration of 150 mm.  相似文献   

15.
The Azotobacter vinelandii rhodanese is a sulfurtransferase enzyme that catalyzes the transfer of the outer sulfur atom from thiosulfate to cyanide. Recently, investigations by NMR relaxation on the (15)N-enriched protein reported that interdomain contacts are rigidly maintained upon the sulfane sulfur transfer from the enzyme to the substrate. The modality of the enzymatic mechanism is then confined to a surface interaction, including dynamics of water molecules buried in the tertiary structure. Thus, investigations have been carried out by fluorescence, circular dichroism, and nuclear magnetic relaxation dispersion measurements. The comparison of circular dichroism spectra of the persulfurated enzyme and the sulfur-free form indicated that small changes occur. Fluorescence quenching studies have been performed to evaluate the conformational changes during catalysis using the fluorescent probe 8-anilinonaphthalene-2-sulfonic acid, and acrylamide, iodide, and cesium ions as quenchers. Changes in exchange dynamics of water molecules buried in the structure with bulk water, observed by nuclear magnetic relaxation dispersion, are due to local conformational transitions, likely involving residues around the active site, and are consistent with the global correlation time found by (15)N relaxation. These results, taken together, provide important information for elucidating the conformational features of the mechanism of action of the enzyme either in the role of a selective donor of a sulfur atom to small-sized substrates (i.e., to cyanide, transforming it into thiocyanate) or in the role of sulfur insertase for the formation of the Fe(2)S(2) iron-sulfur cluster in sulfur-deprived ferredoxins.  相似文献   

16.
Rhodaneses (thiosulfate cyanide sulfurtransferases) are enzymes involved in the production of the sulfur in sulfane form, which has been suggested to be the relevant biologically active sulfur species. Rhodanese domains occur in the three major domains of life. We have characterized a new periplasmic single-domain rhodanese from a hyperthermophile bacterium, Aquifex aeolicus, with thiosulfate:cyanide transferase activity, Aq-1599. The oligomeric organization of the enzyme is stabilized by a disulfide bridge. To date this is the first characterization from a hyperthermophilic bacterium of a periplasmic sulfurtransferase with a disulfide bridge. The aq-1599 gene belongs to an operon that also contains a gene for a prepilin peptidase and that is up-regulated when sulfur is used as electron acceptor. Finally, we have observed a sulfur-dependent bacterial adherence linked to an absence of flagellin suggesting a possible role for sulfur detection by A. aeolicus.  相似文献   

17.
Rhodaneses catalyze the transfer of the sulfane sulfur from thiosulfate or thiosulfonates to thiophilic acceptors such as cyanide and dithiols. In this work, we define for the first time the gene, and hence the amino acid sequence, of a 12-kDa rhodanese from Escherichia coli. Well-characterized rhodaneses are comprised of two structurally similar ca. 15-kDa domains. Hence, it is thought that duplication of an ancestral rhodanese gene gave rise to the genes that encode the two-domain rhodaneses. The glpE gene, a member of the sn-glycerol 3-phosphate (glp) regulon of E. coli, encodes the 12-kDa rhodanese. As for other characterized rhodaneses, kinetic analysis revealed that catalysis by purified GlpE occurs by way of an enzyme-sulfur intermediate utilizing a double-displacement mechanism requiring an active-site cysteine. The K(m)s for SSO(3)(2-) and CN(-) were 78 and 17 mM, respectively. The apparent molecular mass of GlpE under nondenaturing conditions was 22.5 kDa, indicating that GlpE functions as a dimer. GlpE exhibited a k(cat) of 230 s(-1). Thioredoxin 1 from E. coli, a small multifunctional dithiol protein, served as a sulfur acceptor substrate for GlpE with an apparent K(m) of 34 microM when thiosulfate was near its K(m), suggesting that thioredoxin 1 or related dithiol proteins could be physiological substrates for sulfurtransferases. The overall degree of amino acid sequence identity between GlpE and the active-site domain of mammalian rhodaneses is limited ( approximately 17%). This work is significant because it begins to reveal the variation in amino acid sequences present in the sulfurtransferases. GlpE is the first among the 41 proteins in COG0607 (rhodanese-related sulfurtransferases) of the database Clusters of Orthologous Groups of proteins (http://www.ncbi.nlm.nih.gov/COG/) for which sulfurtransferase activity has been confirmed.  相似文献   

18.
Sulfurtransferases/rhodaneses (Str) comprise a group of enzymes widely distributed in all phyla which catalyze in vitro the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. The best characterized Str is bovine rhodanese (EC 2.8.1.1) which catalyses in vitro the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms contain many proteins carrying a typical rhodanese pattern or domain forming multi-protein families (MPF). Despite the presence of Str activities in many living organisms, the physiological role of the members of this MPF has not been established unambiguously. While in mammals these proteins are involved in the elimination of toxic cyanogenic compounds, their ubiquity suggests additional physiological functions. In plants, Str are localized in the cytoplasm, mitochondria, plastids, and nucleus. Str probably also transfer reduced sulfur onto substrates as large as peptides or proteins. Several studies in different organisms demonstrate a protein–protein interaction with members of the thioredoxin MPF indicating a role of Str in maintenance of the cellular redox homeostasis. The increased expression of several members of the Str MPF in various stress conditions could be a response to oxidative stress. In summary, data indicate that Str are involved in various essential metabolic reactions.  相似文献   

19.
The interaction of bovine liver rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) with the acceptor substrates, dithiothreitol or cyanide, was studied. When incubated in the presence of cyanide or dithiothreitol, rhodanese was inactivated in a time-dependent process. This inactivation was detectable only at low enzyme concentrations; the rate and degree of inactivation could be modulated by varying the substrate concentration or the system pH. Activity measurements and fluorescence spectroscopy techniques were used in examining the inactivation phenomenon. Sulfur transfer to dithiothreitol was measured by direct assay and was shown to involve the dequenching of enzymic intrinsic fluorescence that had been previously observed only with cyanide as the acceptor substrate. Substrate-potentiated inactivation of rhodanese (with cyanide) has been reported before, but the cause and nature of this interaction were unexplained. The results presented here are consistent with an explanation invoking oxidation of rhodanese in the course of inactivation.  相似文献   

20.
Sodium 2-propenyl thiosulfate, a water-soluble organo-sulfane sulfur compound isolated from garlic, induces apoptosis in a number of cancer cells. The molecular mechanism of action of sodium 2-propenyl thiosulfate has not been completely clarified. In this work we investigated, by in vivo and in vitro experiments, the effects of this compound on the expression and activity of rhodanese. Rhodanese is a protein belonging to a family of enzymes widely present in all phyla and reputed to play a number of distinct biological roles, such as cyanide detoxification, regeneration of iron-sulfur clusters and metabolism of sulfur sulfane compounds. The cytotoxic effects of sodium 2-propenyl thiosulfate on HuT 78 cells were evaluated by flow cytometry and DNA fragmentation and by monitoring the progressive formation of mobile lipids by NMR spectroscopy. Sodium 2-propenyl thiosulfate was also found to induce inhibition of the sulfurtransferase activity in tumor cells. Interestingly, in vitro experiments using fluorescence spectroscopy, kinetic studies and MS analysis showed that sodium 2-propenyl thiosulfate was able to bind the sulfur-free form of the rhodanese, inhibiting its thiosulfate:cyanide-sulfurtransferase activity by thiolation of the catalytic cysteine. The activity of the enzyme was restored by thioredoxin in a concentration-dependent and time-dependent manner. Our results suggest an important involvement of the essential thioredoxin-thioredoxin reductase system in cancer cell cytotoxicity by organo-sulfane sulfur compounds and highlight the correlation between apoptosis induced by these compounds and the damage to the mitochondrial enzymes involved in the repair of the Fe-S cluster and in the detoxification system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号