首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism. The gene responsible for WD was discovered in 1993 and is located on chromosome 13 at 13q14.3. It encodes a copper-specific transporting P-type ATPase. Early diagnosis can improve treatment outcome and decrease the rate of disability or even mortality. We used Sanger sequencing to identify mutation hot spots in 55 northern Vietnamese with a clinical diagnosis of WD. Mutations were screened and detected by direct DNA sequencing. A total of 26 different ATP7B gene mutations were identified, including seven novel mutations (five nonsense and two missense mutations). The most frequent mutations were p.Ser105Ter (24.55%), p.Arg778Leu (5.45%) and p.Thr850Ile (4.55%). Mutation detection rate in exon 2 was 34.55% and ranked first, followed by exon 8 with 16.36%, and exon 18 with 10.91% each, thus, exons 2, 8 and 18 are the mutation hot spots for northern Vietnamese WD patients. These findings were different from previous studies in Asia. Our research established a suitable strategy for ATP7B gene testing in northern Vietnamese WD patients.  相似文献   

2.
Wilson Disease (WD) is a hereditary genetic disorder, which coincides with a dysfunctional copper (Cu) metabolism caused by mutations in ATP7B, a membrane-bound P1B-type ATPase responsible for Cu export from hepatic cells. The N-terminal part (~ 600 residues) of the multi-domain 1400-residue ATP7B constitutes six metal binding domains (MBDs), each of which can bind a copper ion, interact with other ATP7B domains as well as with different proteins. Although the ATP7B’s MBDs have been investigated in vitro and in vivo intensively, it remains unclear how these domains modulate overall structure, dynamics, stability and function of ATP7B. The presence of six MBDs is unique to mammalian ATP7B homologs, and many WD causing missense mutations are found in these domains. Here, we have summarized previously reported in vitro biophysical data on the MBDs of ATP7B and WD point mutations located in these domains. Besides the demonstration of where the research field stands today, this review showcasts the need for further biophysical investigation about the roles of MBDs in ATP7B function. Molecular mechanisms of ATP7B are important not only in the development of new WD treatment but also for other aspects of human physiology where Cu transport plays a role.  相似文献   

3.
4.
ATP7B mutations result in Cu storage in the liver and brain in Wilson disease (WD). Atox1 and COMMD1 were found to interact with ATP7B and involved in copper transport in the hepatocyte. To understand the molecular etiology of WD, we analyzed ATP7B, Atox1 and COMMD1 genes. Direct sequencing of (i) ATP7B gene was performed in 112 WD patients to identify the spectrum of disease-causing mutations in the French population, (ii) Atox1 gene was performed to study the known polymorphism 5'UTR-99T>C in 78 WD patients with two ATP7B mutations and (iii) COMMD1 gene was performed to detect the nucleotide change c.492GAT>GAC. MLPA (Multiplex Ligation-dependent Probe Amplification) analysis was performed in WD patients presenting only one ATP7B mutation. Among our 112 WD unrelated patients, 83 different ATP7B gene mutations were identified, 27 of which were novel. Two ATP7B mutations were identified in 98 WD cases, and one mutation was identified in 14 cases. In two of these 14 WD patients, we identified the deletion of exon 4 of the ATP7B gene by MLPA technique. In 78 selected patients of the cohort with two mutations in ATP7B, we have examined genotype-phenotype correlation between the detected changes in Atox1 and COMMD1 genes, and the presentation of the WD patients. Based on the data of this study, no major role can be attributed to Atox1 and COMMD in the pathophysiology or clinical variation of WD.  相似文献   

5.
Wilson disease (WD) is an autosomal recessive disorder characterized by toxic accumulation of copper in the liver and subsequently in the brain and other organs. On the basis of sequence homology to known genes, the WD gene (ATP7B) appears to be a copper-transporting P-type ATPase. A search for ATP7B mutations in WD patients from five population samples, including 109 North American patients, revealed 27 distinct mutations, 18 of which are novel. A composite of published findings shows missense mutations in all exons-except in exons 1-5, which encode the six copper-binding motifs, and in exon 21, which spans the carboxy-terminus and the poly(A) tail. Over one-half of all WD mutations occur only rarely in any population sample. A splice-site mutation in exon 12 accounts for 3% of the WD mutations in our sample and produces an in-frame, 39-bp insertion in mRNA of patients homozygous, but not heterozygous, for the mutation. The most common WD mutation (His1069Glu) was represented in approximately 38% of all the WD chromosomes from the North American, Russian, and Swedish samples. In several population cohorts, this mutation deviated from Hardy-Weinberg equilibrium, with an overrepresentation of homozygotes. We did not find a significant correlation between His1069Glu homozygosity and several clinical indices, including age of onset, clinical manifestation, ceruloplasmin activity, hepatic copper levels, and the presence of Kayser-Fleischer rings. Finally, lymphoblast cell lines from individuals homozygous for His1069Glu and 4 other mutations all demonstrated significantly decreased copper-stimulated ATPase activity.  相似文献   

6.
In this study, we report the further results of an ongoing project on the delineation of the spectrum of mutations on the ATP7B gene in Wilson disease (WD) patients of Greek origin. We have analyzed 24 additional families and detected 16 mutations (five frameshifts, two splice site, two nonsense, and seven missense), of which six are novel. On adding these results to the ones already published by us, we conclude that WD shows a marked allelic heterogeneity in the Greek population. Of the total number of mutations so far detected, the most common eight account for the molecular defect in 72.8% of the WD chromosomes. The most frequent mutation is the His0169Gln, which has a frequency of 28.5%, similar to those reported in North European populations. Using these data, an efficient strategy of mutation screening for WD is possible in this population, thus improving the possibility of preclinical diagnosis.  相似文献   

7.
Wilson disease (WD) is an autosomal recessive disorder of copper biliary excretion caused by an impaired function of ATP7B, a metal-transporting P-type ATPase encoded by WD gene. It results in copper accumulation, mostly in liver and brain tissues. Mutation analysis was carried out on 11 WD French unrelated patients presenting a predominant neurological form of this illness. SSCP and dHPLC analysis followed by sequencing of the 21 exons and their flanking introns were performed. Thirteen different mutations in a total of 17, and, among them, 10 novel variants were evidenced. Two deletions (c.654_655delCC and c.1745_1746delTA), 4 missense mutations (p.F763Y, p.G843R, p.D918A and p.L979Q), 1 nonsense mutation (p.Q1200X), 1 splice site mutation (c.1947-1G>C) and 2 intronic silent substitutions (c.2448-25G>T and c.3412+13T>A) were detected. These data extend the mutational spectrum of the disease, already known to be a very heterogeneous genetic disorder. As compared to hepatic manifestations, the phenotypes associated to these mutations confirm that neurological presentations associated with other mutations than p.H1069Q are also often late in their onset. Most of these neurological forms probably correspond to an attenuated impairment of copper metabolism, as compared to hepatic forms of the disease, mostly diagnosed earlier.  相似文献   

8.
9.
Wilson disease (WD) is an autosomal recessive disorder caused by defects in the copper-transporting P-type ATPase gene (ATP7B) resulting in the accumulation of copper in the liver and the brain. We identified prevalent mutations in the ATP7B of Indian WD patients and attempted to correlate those with the disease phenotype. Patients from 62 unrelated families and their first-degree relatives comprising 200 individuals were enrolled in this study. Three dinucleotide repeat markers flanking WD locus and a few intragenic SNPs were used to determine the genotypes and construct haplotypes of the patients. Seven recurring haplotypes accounting for 58% of the total mutant chromosomes were identified, and four underlying defects in the ATP7B representing 37% of WD chromosomes were detected. In addition, five other rare mutations were characterized. Thus a total of nine mutations including five novel changes were identified in the ATP7B of WD patients. Interestingly, homozygotes for different mutations that would be expected to produce similar defective proteins showed significant disparity in terms of organ involvement and severity of the disease. We also observed WD patients with neurological symptoms with little or no manifestation of hepatic pathogenesis. In one WD family, the proband and a sib had remarkably different phenotypes despite sharing the same pair of mutant chromosomes. These findings suggest a potential role for yet unidentified modifying loci for the observed phenotypic heterogeneity among the WD patients.  相似文献   

10.
The copper-transporting ATPase ATP7B has an essential role in human physiology, particularly for the liver and brain function. Inactivation of ATP7B is associated with a severe hepato-neurologic disorder, Wilson disease (WD). Hundreds of WD related mutations have been identified in ATP7B to date. The low frequency and the compound-heterozygous nature of causative mutations complicate the analysis of individual mutants and the establishment of genotype-phenotype correlations. To facilitate studies of disease-causing mutations and mechanistic understanding of WD, we have homology-modelled the ATP7B core (residues 643-1377) using the recent structure of the bacterial copper-ATPase LCopA as a template. The model, supported by evolutionary conservation and hydrophobicity analysis, as well as existing and new mutagenesis data, allows molecular interpretations of experimentally characterized clinical mutations. We also illustrate that structure and conservation can be used to grade potential deleterious effects for many WD mutations, which were clinically detected but have not yet been experimentally characterized. Finally, we compare the structural features of ATP7B and LCopA and discuss specific features of the eukaryotic copper pump.  相似文献   

11.
Background. Wilson’s disease (WD) is a rare inherited disorder caused by mutations in the ATP7B gene resulting in copper accumulation in different organs. However, data on ATP7B mutation spectrum in Russia and worldwide are insufficient and contradictory. The objective of the present study was estimation of the frequency of ATP7B gene mutations in the Russian population of WD patients. Materials and methods. 75 WDpatients were examined by next-generation sequencing (NGS). A targeted panel NimbleGen SeqCap EZ Choice: 151012_HG38_CysFib_EZ_HX3 (ROCHE)was designed for analysis of ATP7B gene and possible modifier genes. Retrospective assessment of a diagnostic WD score (Leipzig, 2001) was also performed. Results. 31 mutations in ATP7B gene were detected. Two most frequent mutations were c.3207C > A (51,85% of alleles) and c.3190 G > A (8,64% of alleles). Single rare mutations were detected in 29% of cases. In 96% cases mutations of both copies of the ATP7B were revealed. We also observed 3 novel potentially pathogenic variants which were not previously described (c.1870-8A > G, c.3655A > T (p.Ile1219Phe), c.3036dupC (p.Lys1013fs). For 25% of patients at the time of the manifestation the diagnosis WD could not be established using the earlier proposed diagnostic score. There was a remarkable delay in diagnosis for the majority of patients. Only 33% of patients WD was diagnosed in three months after the first symptoms, 29%patients - in 3–12 months, 30% – in 1–10 years, in 8% – more than 10 years. Generally, clinical appearance of WD may be rather variable at manifestation and genetic profiling at this step is the only way to confirm the presence of WD.  相似文献   

12.
Herein we report the results of mutation analysis of the ATP7B gene in a group of 134 Wilson disease (WD) families (268 chromosomes) prevalently of Italian origin. Using the SSCP and sequencing methods we identified 71 disease-causing mutations. Twenty-four were novel, while 19 more mutations already described, were identified in new populations in this study. A known mutation G591D showed a regional distribution, since it was only detected in 38.5% of the analyzed chromosomes in WD patients originating from Apulia, a region of South Italy. Detection of new mutations in the ATP7B gene increases our capability of molecular analysis that is essential for early diagnosis and treatment of WD.  相似文献   

13.
Ferenci P 《Human genetics》2006,120(2):151-159
Wilson disease is an autosomal recessive inherited disorder of copper metabolism. The Wilson disease gene codes for a copper transporting P-type ATPase (ATP7B). Molecular genetic analysis reveals at least 300 distinct mutations. While most reported mutations occur in single families, a few are more common. The most common mutation in patients from Central, Eastern, and Northern Europe is the point mutation H1069Q (exon 14). About 50–80% of Wilson disease (WD) patients from these countries carry at least one allele with this mutation with an allele frequency ranging between 30 and 70%. Other common mutations in Central and Eastern Europe are located on exon 8 (2299insC, G710S), exon 15 (3400delC) and exon 13 (R969Q). The allele frequency of these mutations is lower than 10%. In Mediterranean countries there is a wide range of mutations, the frequency of each of them varies considerably from country to country. In Sardinia, a unique deletion in the 5′ UTR (−441/−427 del) is very frequent. In mainland Spain the missense mutation M645R in exon 6 is particularly common. Data from non-European countries are scarce. Most data from Asia are from Far Eastern areas (China, South Korea and Japan) where the R778L missense mutation in exon 8 is found with an allele frequency of 14–49%. In summary, given the constant improvement of analytic tools genetic testing will become an integral part for the diagnosis of WD. Knowledge of the differences in the worldwide distribution of particular mutations will help to design shortcuts for genetic diagnosis of WD.  相似文献   

14.
Kim GH  Yang JY  Park JY  Lee JJ  Kim JH  Yoo HW 《Genetic testing》2008,12(3):395-399
Wilson's disease (WD), an autosomal recessive disorder of copper transport, is one of the most common inherited metabolic disorders in Korea. Despite its frequency, the incidence and carrier frequency of WD has not yet been estimated in the Korean population. We therefore screened for four major missense mutations (p.Arg778Leu, p.Ala874Val, p.Leu1083Phe, and p.Asn1270Ser) of the ATP7B gene in 476 newborn filter papers by real-time multiplex PCR and melting curve analysis using the SYBR Green intercalator method based on the amplification refractory mutation system test. Newborn filter papers with abnormal melting curves were subjected to subsequent sequence analysis. Three mutated alleles, one p.Arg778Leu and two p.Ala874Val, were detected among the 476 newborn filter papers (952 alleles). The carrier frequency and incidence of WD in the Korean population were determined as 1 in 88.2 and 30,778, respectively, by reversely calculating based on the Hardy-Weinberg law.  相似文献   

15.
Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense mutations in ATP13A2 associated with early-onset forms of parkinsonism.  相似文献   

16.
The LRRK2 gene (Leucine-Rich Repeat Kinase 2, PARK8) is mutated in a significant number of cases of autosomal dominant Parkinson’s disease (PD) and in some sporadic cases of late-onset PD. LRRK2 is a large, complex protein that comprises several interaction domains: armadillo, ankyrin, leucine-rich repeats and WD40 domains; two catalytic domains: ROC-GTPase and serine/threonine kinase; and a COR domain (unknown function). Pathogenic mutations are scattered all over the domains of LRRK2, although the prevalence of mutations in some domains is higher (ROC-GTPase, COR and kinase). In this work, we model the structure of each domain to predict and explore the effects of described missense mutations and polymorphisms. The results allow us to postulate the possible effects of pathogenic mutations in the function of the protein, and hypothesize the importance of some polymorphisms that have not been linked directly to PD, but act as risk factors for the disease. In our analysis, we also study the effects of PD-related mutations in the kinase domain structure and in the phosphorylation of the activation loop to determine effects on kinase activity.  相似文献   

17.
Copper transport by the P(1)-ATPase ATP7B, or Wilson disease protein (WNDP),1 is essential for human metabolism. Perturbation of WNDP function causes intracellular copper accumulation and severe pathology, known as Wilson disease (WD). Several WD mutations are clustered within the WNDP nucleotide-binding domain (N-domain), where they are predicted to disrupt ATP binding. The mechanism by which the N-domain coordinates ATP is presently unknown, because residues important for nucleotide binding in the better characterized P(2)-ATPases are not conserved within the P(1)-ATPase subfamily. To gain insight into nucleotide binding under normal and disease conditions, we generated the recombinant WNDP N-domain and several WD mutants. Using isothermal titration calorimetry, we demonstrate that the N-domain binds ATP in a Mg(2+)-independent manner with a relatively high affinity of 75 microm, compared with millimolar affinities observed for the P(2)-ATPase N-domains. The WNDP N-domain shows minimal discrimination between ATP, ADP, and AMP, yet discriminates well between ATP and GTP. Similar results were obtained for the N-domain of ATP7A, another P(1)-ATPase. Mutations of the invariant WNDP residues E1064A and H1069Q drastically reduce nucleotide affinities, pointing to the likely role of these residues in nucleotide coordination. In contrast, the R1151H mutant exhibits only a 1.3-fold reduction in affinity for ATP. The C1104F mutation significantly alters protein folding, whereas C1104A does not affect the structure or function of the N-domain. Together, the results directly demonstrate the phenotypic diversity of WD mutations within the N-domain and indicate that the nucleotide-binding properties of the P(1)-ATPases are distinct from those of the P(2)-ATPases.  相似文献   

18.
In Saccharomyces cerevisiae, Prp17p is required for the efficient completion of the second step of pre-mRNA splicing. The function and interacting factors for this protein have not been elucidated. We have performed a mutational analysis of yPrp17p to identify protein domains critical for function. A series of deletions were made throughout the region spanning the N-terminal 158 amino acids of the protein, which do not contain any identified structural motifs. The C-terminal portion (amino acids 160-455) contains a WD domain containing seven WD repeats. We determined that a minimal functional Prp17p consists of the WD domain and 40 amino acids N-terminal to it. We generated a three-dimensional model of the WD repeats in Prp17p based on the crystal structure of the beta-transducin WD domain. This model was used to identify potentially important amino acids for in vivo functional characterization. Through analysis of mutations in four different loops of Prp17p that lie between beta strands in the WD repeats, we have identified four amino acids, 235TETG238, that are critical for function. These amino acids are predicted to be surface exposed and may be involved in interactions that are important for splicing. Temperature-sensitive prp17 alleles with mutations of these four amino acids are defective for the second step of splicing and are synthetically lethal with a U5 snRNA loop I mutation, which is also required for the second step of splicing. These data reinforce the functional significance of this region within the WD domain of Prp17p in the second step of splicing.  相似文献   

19.
Wilson''s disease (WD) is an autosomal recessive inherited disorder caused by mutations in the ATPase Cu2+ transporting beta polypeptide gene (ATP7B). The detailed metabolism of copper-induced pathology in WD is still unknown. Gene mutations as well as the possible pathways involved in the ATP7B deficiency were documented. The ATP7B gene was analyzed for mutations in 18 Chinese Han families with WD by direct sequencing. Cell viability and apoptosis analysis of ATP7B small interfering RNA (siRNA)-treated human liver carcinoma (HepG2) cells were measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and Hoechst 33342 staining. Finally, the expression of B-cell CLL/lymphoma 2 (BCL2), BCL2-associated X protein (BAX), sterol regulatory element binding protein 1 (SREBP1), and minichromosome maintenance protein 7 (MCM7) of ATP7B siRNA-treated cells were tested by real-time polymerase chain reaction (real-time PCR) and Western blot analysis. Twenty different mutations including four novel mutations (p.Val145Phe, p.Glu388X, p.Thr498Ser and p.Gly837X) in the ATP7B gene were identified in our families. Haplotype analysis revealed that founder effects for four mutations (p.Arg778Leu, p.Pro992Leu, p.Ile1148Thr and p.Ala1295Val) existed in these families. Transfection of HepG2 cells with ATP7B siRNA resulted in decreased mRNA expression by 86.3%, 93.1% and 90.8%, and decreased protein levels by 58.5%, 85.5% and 82.1% at 24, 48 and 72 hours, respectively (All P<0.01). In vitro study revealed that the apoptotic, cell cycle and lipid metabolism pathway may be involved in the mechanism of WD. Our results revealed that the genetic cause of 18 Chinese families with WD and ATP7B deficiency-induce apoptosis may result from imbalance in cell cycle and lipid metabolism pathway.  相似文献   

20.
LIN-1 is an ETS domain protein. A receptor tyrosine kinase/Ras/mitogen-activated protein kinase signaling pathway regulates LIN-1 in the P6.p cell to induce the primary vulval cell fate during Caenorhabditis elegans development. We identified 23 lin-1 loss-of-function mutations by conducting several genetic screens. We characterized the molecular lesions in these lin-1 alleles and in several previously identified lin-1 alleles. Nine missense mutations and 10 nonsense mutations were identified. All of these lin-1 missense mutations affect highly conserved residues in the ETS domain. These missense mutations can be arranged in an allelic series; the strongest mutations eliminate most or all lin-1 functions, and the weakest mutation partially reduces lin-1 function. An electrophoretic mobility shift assay was used to demonstrate that purified LIN-1 protein has sequence-specific DNA-binding activity that required the core sequence GGAA. LIN-1 mutant proteins containing the missense substitutions had dramatically reduced DNA binding. These experiments identify eight highly conserved residues of the ETS domain that are necessary for DNA binding. The identification of multiple mutations that reduce the function of lin-1 as an inhibitor of the primary vulval cell fate and also reduce DNA binding suggest that DNA binding is essential for LIN-1 function in an animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号