首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elements of human cyclin D1 promoter and regulation involved   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
The Epstein-Barr virus (EBV) immediate-early protein BZLF1 mediates the switch between the latent and lytic forms of EBV infection and has been previously shown to induce a G(1)/S block in cell cycle progression in some cell types. To examine the effect of BZLF1 on cellular gene expression, we performed microarray analysis on telomerase-immortalized human keratinocytes that were mock infected or infected with a control adenovirus vector (AdLacZ) or a vector expressing the EBV BZLF1 protein (AdBZLF1). Cellular genes activated by BZLF1 expression included E2F-1, cyclin E, Cdc25A, and a number of other genes involved in cell cycle progression. Immunoblot analysis confirmed that BZLF1 induced expression of E2F-1, cyclin E, Cdc25A, and stem loop binding protein (a protein known to be primarily expressed during S phase) in telomerase-immortalized keratinocytes. Similarly, BZLF1 increased expression of E2F-1, cyclin E, and stem loop binding protein (SLBP) in primary tonsil keratinocytes. In contrast, BZLF1 did not induce E2F-1 expression in normal human fibroblasts. Cell cycle analysis revealed that while BZLF1 dramatically blocked G(1)/S progression in normal human fibroblasts, it did not significantly affect cell cycle progression in primary human tonsil keratinocytes. Furthermore, in EBV-infected gastric carcinoma cells, the BZLF1-positive cells had an increased number of cells in S phase compared to the BZLF1-negative cells. Thus, in certain cell types (but not others), BZLF1 enhances expression of cellular proteins associated with cell cycle progression, which suggests that an S-phase-like environment may be advantageous for efficient lytic EBV replication in some cell types.  相似文献   

11.
12.
13.
14.
The significance of divalent calcium ions (Ca2+) to cell cycle progression has been a subject of study for several decades, with a regulatory role for Ca2+ suggested in distinct cell types and multiple organisms. Our interest in proliferative vascular diseases led us to focus on mammalian vascular smooth muscle cells (VSMC) in particular, in which we and others had shown that a coordinate elevation in the intracellular free Ca2+ concentration is required for G1 to S phase cell cycle progression. However, the molecular basis for this Ca2+-sensitive cell cycle transition was not known.Our recent discovery of a functional protein-protein interaction between the late G1-active cyclin E1 and the major calcium signal-transducing factor Calmodulin (CaM) sheds new light on the mechanism(s) through which Ca2+ concentrations regulate cell cycle. Having identified a CaM-binding site on cyclin E1, our studies support a direct role for CaM in mediating Ca2+-sensitive cyclin E/cdk2 activity and G1 to S phase transitions in VSMC. The CaM binding site identified on cyclin E1 has a Kd for CaM consistent with that of known CaM-binding proteins, and is composed of a 22 amino acids N-terminal sequence that is highly conserved across several mammalian species. Deletion of this binding site abolished CaM binding and Ca2+-sensitive cyclin E/cdk2 activity.Here we provide our perspectives on the literature supporting a role for Ca2+ in cell cycle regulation, focusing on the evidence implicating CaM in this functionality, and discuss the potential for therapeutic modulation of CaM-dependent cell cycle machinery.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号