首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth characteristics and intraspecies host specificity of Heterocapsa circularisquama virus (HcV), a large icosahedral virus specifically infecting the bivalve-killing dinoflagellate H. circularisquama, were examined. Exponentially growing host cells were more sensitive to HcV than those in the stationary phase, and host cells were more susceptible to HcV infection in the culture when a higher percent of the culture was replaced with fresh medium each day, suggesting an intimate relationship between virus sensitivity and the physiological condition of the host cells. HcV was infective over a wide range of temperatures, 15 to 30°C, and the latent period and burst size were estimated at 40 to 56 h and 1,800 to 2,440 infective particles, respectively. Transmission electron microscopy revealed that capsid formation began within 16 h postinfection, and mature virus particles appeared within 24 h postinfection at 20°C. Compared to Heterosigma akashiwo virus, HcV was more widely infectious to H. circularisquama strains that had been independently isolated in the western part of Japan, and only 5.3% of the host-virus combinations (53 host and 10 viral strains) showed resistance to viral infection. The present results are helpful in understanding the ecology of algal host-virus systems in nature.  相似文献   

2.
Viruses are extremely abundant in seawater and are believed to be significant pathogens to photosynthetic protists (microalgae). Recently, several novel RNA viruses were found to infect marine photosynthetic protists; one of them is HcRNAV, which infects Heterocapsa circularisquama (Dinophyceae). There are two distinct ecotypes of HcRNAV with complementary intraspecies host ranges. Nucleotide sequence comparison between them revealed remarkable differences in the coat protein coding gene resulting in a high frequency of amino acid substitutions. However, the detailed mechanism supporting this intraspecies host specificity is still unknown. In this study, virus inoculation experiments were conducted with compatible and incompatible host-virus combinations to investigate the mechanism determining intraspecies host specificity. Cells were infected by adding a virus suspension directly to a host culture or by transfecting viral RNA into host cells by particle bombardment. Virus propagation was monitored by Northern blot analysis with a negative-strand-specific RNA probe, transmission electron microscopy, and a cell lysis assay. With compatible host-virus combinations, propagation of infectious progeny occurred regardless of the inoculation method used. When incompatible combinations were used, direct addition of a virus suspension did not even result in viral RNA replication, while in host cells transfected with viral RNA, infective progeny virus particles with a host range encoded by the imported viral RNA were propagated. This indicates that the intraspecies host specificity of HcRNAV is determined by the upstream events of virus infection. This is the first report describing the reproductive steps of an RNA virus infecting a photosynthetic protist at the molecular level.  相似文献   

3.
Viruses are believed to be significant pathogens for phytoplankton. Usually, they infect a single algal species, and often their infection is highly strain specific. However, the detailed molecular background of the strain specificity and its ecological significance have not been sufficiently understood. Here, we investigated the temporal changes in viral RNA accumulation and virus-induced cell lysis using a bloom-forming dinoflagellate Heterocapsa circularisquama and its single-stranded RNA virus, HcRNAV. We observed at least three host response patterns to virus inoculation: sensitive, resistant, and delayed lysis. In the sensitive response, the host cell culture was permissive for viral RNA replication and apparent cell lysis was observed; in contrast, resistant cell culture was nonpermissive for viral RNA replication and not lysed. In the delayed-lysis response, although viral RNA replication occurred, virus-induced cell lysis was faint and remarkably delayed. In addition, the number of infectious virus particles released to the culture supernatant at 12 days postinoculation was comparable to that of the sensitive strain. By further analysis, a few strains were characterized as variants of the delayed-lysis strain. These observations indicate that the response of H. circularisquama to HcRNAV infection is highly diverse.  相似文献   

4.
We studied the ecological relationships between the bloom-forming dinoflagellate Heterocapsa circularisquama and its infectious viruses in field surveys conducted in western Japan. The occurrence of H. circularisquama blooms in Imari Bay during 2002 and in Ago Bay during 2002 and 2004 was accompanied by specific increase in abundance of viruses lytic to H. circularisquama. Using northern dot-blot analysis, approximately 96% of the clonal virus isolates collected in the field surveys positively reacted with a molecular probe specific for HcRNAV (H. circularisquama RNA virus); hence, viral impacts on H. circularisquama population observed in these field surveys are considered largely due to HcRNAV and/or its closely related viruses. The dynamics of type UA viruses and type CY viruses having complementary host ranges to H. circularisquama clones were different in each survey and considered to reflect fluctuations in abundance of their suitable host cells in situ. The dynamics of H. circularisquama and its viruses in Ago Bay from 2002 to 2004 suggests the concentration of HcRNAV in the sediment prior to the host's blooming season is a significant factor in determining the size and length of the H. circularisquama blooms. These results support the hypothesis that HcRNAV infection is one of the significant factors affecting the population dynamics of H. circularisquama in both quantity (biomass) and quality (clonal composition).  相似文献   

5.
The host cell activation state impacts the nature of human immunodeficiency virus infection. Activated cells facilitate productive infections; quiescent cells enable the virus to enter a latent state, the major obstacle to viral clearance. We wanted to understand how these differences affected viral gene expression. In quiescent cells activated prior to infection, viral RNA was seen 12 h postinfection; when cells were stimulated postinfection, viral RNA was not seen until 36 h postinfection. Up-regulation of viral RNA in latently infected cells occurred within 2 h poststimulation. This hierarchy also held true for viral protein production. These results may explain the rapid reemergence of viremia following termination of therapy.  相似文献   

6.
HcRNAV is the only known cultured dinoflagellate-infecting RNA virus. Lysis of its host dinoflagellate Heterocapsa circularisquama caused by HcRNAV is followed by apparent cell regrowth. Here we investigate the mechanism supporting the survival phenomenon. The proportion of normal cells with intact nucleus decreased to ∼8% by 3 days post infection, and then, increased to > 90% at 15 days post infection. There were abnormal cells lacking an intact nucleus, and this was followed by propagation of virus-resistant survivor cells. The proportion of HcRNAV-resistant cells in three different subcultures and temporal fluctuations were compared: a clonal H. circularisquama culture without virus inoculation (virus-sensitive, VS), a surviving isolate from the HcRNAV-inoculated Culture-VS incubated in autoclaved medium (virus-resistant, VR) and a portion of Culture-VR incubated with HcRNAV (VR incubated with virus, VR + V). The proportion of HcRNAV-resistant cells in Culture-VS was 0% and in Culture-VR + V was > 94% during the experiment; and Culture-VR fluctuated from 4% to 71%. Hence, the virus resistance was assumed to be reversible. Using Northern hybridization, viral genome accumulation was not detected in Culture-VR + V cells either inoculated with HcRNAV or transfected with HcRNAV-genome; thus, intracellular viral RNA replication was assumed to be interrupted in the virus-resistant cells.  相似文献   

7.
8.
Simian virus 40 infection of semipermissive human diploid fibroblasts (HF), at early passage in cell culture, was compared with that of permissive established monkey cell lines. Viral DNA can be readily detected at 24 to 48 h postinfection at 37 degrees C with a high multiplicity of infection, approaching 10% of that of monkey cells (TC7). The length of time necessary for replication of an average molecule of viral DNA was found to be indistinguishable in HF and TC7 cells. Strand elongation plus termination were assessed by following the accumulation of DNA I at 40 degrees C from replicative intermediates of tsA30 prelabeled at 33 degrees C, obviating isotope pool problems. Combined initiation and elongation of wild-type viral DNA was measured by density shift experiments involving a 5-bromodeoxyuridine chase of prelabeled [3H]thymidine-labeled viral DNA. Determination of accumulation of viral T and V antigens supports the conclusion that the most likely basis for the reduced virus yield in HF cells results from the inefficiency of an early stage in virus infection, before or during uncoating. Similar results were obtained in fibroblasts derived from patients with xeroderma pigmentosum, suggesting that enzymes of UV repair are not required in unirradiated simian virus 40 DNA synthesis.  相似文献   

9.
Since the first discovery of the very high virus abundance in marine environments, a number of researchers were fascinated with the world of "marine viruses", which had previously been mostly overlooked in studies on marine ecosystems. In the present paper, the possible role of viruses infecting marine eukaryotic microalgae is enlightened, especially summarizing the most up-to-the-minute information of marine viruses infecting bloom-forming dinoflagellates and diatoms. To author's knowledge, approximately 40 viruses infecting marine eukaryotic algae have been isolated and characterized to different extents. Among them, a double-stranded DNA (dsDNA) virus "HcV" and a single-stranded RNA (ssRNA) virus "HcRNAV" are the only dinoflagellate-infecting (lytic) viruses that were made into culture; their hosts are a bivalve-killing dinoflagellate Heterocapsa circularisquama. In this article, ecological relationship between H. circularisquama and its viruses is focused. On the other hand, several diatom-infecting viruses were recently isolated and partially characterized; among them, one is infectious to a pen-shaped bloom-forming diatom species Rhizosolenia setigera; some viruses are infectious to genus Chaetoceros which is one of the most abundant and diverse diatom group. Although the ecological relationships between diatoms and their viruses have not been sufficiently elucidated, viral infection is considered to be one of the significant factors affecting dynamics of diatoms in nature. Besides, both the dinoflagellate-infecting viruses and diatom-infecting viruses are so unique from the viewpoint of virus taxonomy; they are remarkably different from any other viruses ever reported. Studies on these viruses lead to an idea that ocean may be a treasury of novel viruses equipped with fascinating functions and ecological roles.  相似文献   

10.
登革病毒对人树突状细胞感染性的研究   总被引:1,自引:0,他引:1  
探讨登革病毒对人树突状细胞(DC)的感染性。人外周新鲜血常规分离单核细胞,经细胞因子GMCSF、IL4诱导培养成DC,通过形态学特征、细胞表型和淋巴细胞刺激能力鉴定。用登革病毒2型(DV2)感染DC,于作用后6h、24h、48h、72h、96h分别收集上清液和细胞,甲基纤维素微量空斑试验测定病毒滴度,间接免疫荧光法检测细胞上病毒抗原表达,透射电镜观察病毒在细胞内的定位。病毒感染后6h即可在培养上清中测出病毒,病毒滴度在48h达到高峰,以后逐渐下降。间接免疫荧光法证明感染的DC胞浆及胞膜上携带病毒抗原。透射电镜下在病毒感染48h后DC胞浆内可见大量病毒颗粒。树突状细胞是登革病毒感染的靶细胞,病毒可感染DC并产生大量病毒颗粒,可能在其发病机制中起重要作用。  相似文献   

11.
Incorporation of (3)H-thymidine by BSC-1 cells infected with Shope fibroma virus was studied by means of high-resolution electron microscopic radioautography. One-hour pulses with the radioactive precursor were given at various times after infection, during a one-step growth cycle of the virus. In the cytoplasm of infected cells, reacted grains occurred over foci of viroplasm; these foci are believed to represent the true sites of viral deoxyribonucleic acid (DNA) replication. Shope fibroma virus DNA synthesis began before 3 hr postinfection, reached a maximum at 8 to 9 hr, and then declined rapidly. It was demonstrated that the decline in (3)H-thymidine uptake is correlated with the onset of viral morphogenesis. In comparison with the noninfected culture, the nuclear labeling, which reflects host DNA metabolism, was slightly reduced by 4 hr postinfection. Inhibition became more marked as infection progressed, and host DNA synthesis was almost completely suppressed in late stages of viral development.  相似文献   

12.
The stimulation of host macromolecular synthesis and induction into the cell cycle of serum-deprived G0-G1-arrested mouse embryo fibroblasts were examined after infection of resting cells with wild-type simian virus 40 or with viral mutants affecting T antigen (tsA58) or small t antigen (dl884). At various times after virus infection, cell cultures were analyzed for DNA synthesis by autoradiography and flow microfluorimetry. Whereas mock-infected cultured remained quiescent and displayed either a 2N DNA content (80%) or a 4N DNA content (15%), mouse cells infected with wild-type simian virus 40, tsA58 at 33 degrees C, or dl884 were induced into active cell cycling at approximately 18 h postinfection. Although dl884-infected mouse cells were induced to cycle initially at the same rate as wild type-infected cells, they became arrested earlier after infection and also failed to reach the saturation densities of wild-type simian virus 40-infected cells. Infection with dl884 also failed to induce loss of cytoplasmic actin cables in the majority of the infected cell population. Mouse cells infected with tsA58 and maintained at 39.5 degrees C showed a transient burst of DNA synthesis as reflected by changes in cell DNA content and an increase in the number of labeled nuclei during the first 24 h postinfection; however, after the abortive stimulation of DNA synthesis at 39.5 degrees C shift experiments demonstrated that host DNA replication was regulated by a functional A gene product. It is concluded that both products of the early region of simian virus 40 DNA play a complementary role in recruiting and maintaining simian virus 40-infected cells in the cell cycle.  相似文献   

13.
Shope fibroma virus. II. Role of the virion-associated nucleases.   总被引:1,自引:1,他引:0       下载免费PDF全文
The effect of Shope fibroma virus (SFV) infection on host DNA synthesis was investigated. The cytocidal strain, SFV-I, inhibited the incorporation of [3H]thymidine into nuclear DNA very shortly (2 h) after infection, whereas the noncytocidal strain, SFV-W, did so later (10 h postinfection) and to a lesser extent. Furthermore, a two- to threefold stimulation of host DNA synthesis was recorded in SFV-W-infected cells 3 to 4 h after infection. Since virion-associated nucleases have been implicated in the shutoff of host synthesis, these and other enzymatic activities were measured in purified virion preparations. The SFV strains and vaccinia virus contained equivalent amounts of DNA-dependent RNA polymerase, ATPase, and protein kinase activities. However, in SFV-W the pH 4.5 exonuclease activity was lower than in SFV-I and vaccinia virus, and the level of pH 7.8 endonuclease was almost undetectable. To test whether the lack of endonucleolytic activity had some effect on the removal of the cross-links in the parental DNA that occurs after viral penetration, the fate of the virion SFV DNA was followed. The majority (80%) of the SFV-I and SFV-W DNA molecules extracted after viral adsorption sedimented in alkaline sucrose gradients as cross-linked. After 3 h of infection, 75% of the SFV-I DNA molecules lacked cross-links, whereas 78% of the SFV-W DNA still remained cross-linked. The same results were obtained when the presence of cross-links was tested in restriction fragments. Taken together, these results indicate that virion-associated nucleases are involved in the early shutoff of host DNA synthesis and in the elimination of cross-links from the parental viral DNA.  相似文献   

14.
Infection of primary cultures of total splenic and thymic cells from BALB/c and C3H/HeN mice with CVB4 E2 and JVB strains has been investigated. The presence of positive-strand viral RNA within cells was determined by semi-nested RT-PCR, and viral replication was attested by detection of intracellular negative-strand viral RNA and by release of infectious particles in culture supernatants. Viral replication occurred with both CVB4 strains to an extent dependent on the genetic background of the host. No interferon-alpha production was detected in the supernatants of CVB4-infected cultures using biological titration. Together these results suggest that infection of splenic and thymic cells can play a role in virus dissemination, and therefore in the pathophysiology of CVB4 infections.  相似文献   

15.
16.
17.
A preliminary translational map of the Autographa californica genome was constructed. Eighteen viral DNA restriction fragments were either purified from agarose gels or obtained from pBR322 recombinant DNA plasmids to locate specific gene products. The DNAs were immobilized on nitrocellulose filters and used to select viral mRNAs isolated from RNA obtained from the cytoplasm of infected Spodoptera frugiperda cells at 21 h postinfection. The fragment-specific mRNAs were translated in vitro in the presence of l-[(3)H]leucine by using a rabbit reticulocyte lysate system and analyzed on sodium dodecyl sulfate-polyacrylamide gels. The approximate locations of 19 A. californica nuclear polyhedrosis virus (AcMNPV) gene products were mapped. The genes for mRNAs present late in viral infection were mapped to DNA fragments that represent nearly the entire genome. The molecular weights of many of these proteins were similar to those present in purified AcMNPV extracellular virus and to proteins being made in infected cells at 18 to 21 h postinfection. Cytoplasmic RNA was isolated at 4 h postinfection from infected cells, a time early in the viral infection cycle, and hybridized to AcMNPV DNA immobilized on nitrocellulose filters. AcMNPV-specific early RNA was translated in vitro into at least six polypeptides, the most abundant having a molecular weight of 39,000. Viral polypeptides were detected in cells pulse-labeled with l-[(3)H]leucine at 3 to 6 h postinfection, with molecular weights similar to those of polypeptides made in vitro from early AcMNPV mRNA.  相似文献   

18.
19.
R Harson  C Grose 《Journal of virology》1995,69(8):4994-5010
The pathway of envelopment and egress of the varicella-zoster virus (VZV) and the primary site of viral production within the epidermal layer of the skin are not fully understood. There are several hypotheses to explain how the virus may receive an envelope as it travels to the surface of the monolayer. In this study, we expand earlier reports and provide a more detailed explanation of the growth of VZV in human melanoma cells. Human melanoma cells were selected because they are a malignant derivative of the melanocyte, the melanin-producing cell which originates in the neural crest. We were able to observe the cytopathic effects of syncytial formation and the pattern of egress of virions at the surfaces of infected monolayers by scanning electron microscopy and laser-scanning confocal microscopy. The egressed virions did not appear uniformly over the syncytial surface, rather they were present in elongated patterns which were designated viral highways. In order to document the pathway by which VZV travels from the host cell nucleus to the outer cell membrane, melanoma cells were infected and then processed for examination by transmission electron microscopy (TEM) at increasing intervals postinfection. At the early time points, within minutes to hours postinfection, it was not possible to localize the input virus by TEM. Thus, viral particles first observed at 24 h postinfection were considered progeny virus. On the basis of the TEM observations, the following sequence of events was considered most likely. Nucleocapsids passed through the inner nuclear membrane and acquired an envelope, after which they were seen in the endoplasmic reticulum. Enveloped virions within vacuoles derived from the endoplasmic reticulum passed into the cytoplasm. Thereafter, vacuoles containing nascent enveloped particles acquired viral glycoproteins by fusion with vesicles derived from the Golgi. The vacuoles containing virions fused with the outer plasma membrane and the particles appeared on the surface of the infected cell. Late in infection, enveloped virions were also present within the nuclei of infected cells; the most likely mechanism was retrograde flow from the perinuclear space back into the nucleus. Thus, this study suggests a role for the melanocyte in the pathogenesis of VZV infection, because all steps in viral egress can be accounted for if VZV subsumes the cellular pathways required for melanogenesis.  相似文献   

20.
An assay method for the infectivity of Hantaan virus, a causative agent of HFRS (hemorrhagic fever with renal syndrome), was developed by the use of IFA (immunofluorescent antibody technique). With the aid of this method, the growth characteristics of Hantaan virus, 76-118 strain, were followed in A549 cells. At a maximal MOI (multiplicity of infection) of 1.6 VAIU (viral antigen-inducing units) per cell, the conventionally available value, plateau level potencies of the viral antigen and virus infectivity were attained at eight and ten days postinfection, respectively, and most of the infective virus produced accumulated in the culture fluids of infected cells. When infections were defined with MOI values in terms of VAIU per cell, development of the viral antigen was highly consistent and followed a given pattern of kinetics. Based on these findings, a protocol for preparation of the viral antigen in IFA was presented, wherein spot culture and FBS treatment were emphasized as effective procedures to minimize non-specific staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号