首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Two lipoxygenase (LOX) genes (tomloxA and tomloxB) are expressed in ripening tomato fruit, and tomloxA is also expressed in germinating seedlings [12]. The 5'-upstream regions of these genes were isolated to study the regulatory elements involved in coordinating tomlox gene expression. Sequence analysis of the promoters did not reveal any previously characterized regulatory elements except for TATA and CAAT boxes. However, the sequence motif GATAcAnnAAtnTGATG was found in both promoters. Chimeric gene fusions of each tomlox promoter with the -glucuronidase reporter gene (gus) were introduced into tobacco and tomato plants via Agrobacterium-mediated transformation. GUS activity in tomloxA-gus plants during seed germination peaked at day 5 and was enhanced by methyl jasmonate (MeJa) treatment. No GUS activity was detected in tomloxB-gus seedlings. Neither wounding nor abscisic acid (ABA) treatment of transgenic seedlings modified the activity of either promoter. During fruit development, GUS expression in tomloxA-gus tobacco fruit increased 5 days after anthesis (DAA) and peaked at 20 DAA. In tomloxB-gus tobacco fruit, GUS activity increased at 10 DAA and peaked at 20 DAA. In transgenic tomato fruit, tomloxA-gus expression was localized to the outer pericarp during fruit ripening, while tomloxB-gus expression was localized in the outer pericarp and columella. These data demonstrate that the promoter regions used in these experiments contain cis-acting regulatory elements required for proper regulation of tomlox expression during development and for MeJa-responsiveness.  相似文献   

4.
5.
Strawberry is an ideal model for studying the molecular biology of the development and ripening of non-climacteric fruits. Hormonal regulation of gene expression along all these processes in strawberries is still to be fully elucidated. Although auxins and ABA have been pointed out as the major regulatory hormones, few high-throughput analyses have been carried out to date. The role for ethylene and gibberellins as regulatory hormones during the development and ripening of the strawberry fruit remain still elusive. By using a custom-made and high-quality oligo microarray platform done with over 32,000 probes including all of the genes actually described in the strawberry genome, we have analysed the expression of genes during the development and ripening in the receptacles of these fruits. We classify these genes into two major groups depending upon their temporal and developmental expression. First group are genes induced during the initial development stages. The second group encompasses genes induced during the final maturation and ripening processes. Each of these two groups has been also divided into four sub-groups according their pattern of hormonal regulation. By analyzing gene expression, we clearly show that auxins and ABA are the main and key hormones that combined or independently are responsible of the development and ripening process. Auxins are responsible for the receptacle fruit development and, at the same time¸ prevent ripening by repressing crucial genes. ABA regulates the expression of the vast majority of genes involved in the ripening. The main genes expressed under the control of these hormones are presented and their physiological rule discussed. We also conclude that ethylene and gibberellins do not seem to play a prominent role during these processes.  相似文献   

6.
7.
Fruit-specific promoters have been used as genetic engineering tools for studies on molecular mechanism of fruit development and advance in fruit quality and additional value by increasing functional component. Especially fruit-ripening specific promoters have been well utilized and studied in tomato; however, few studies have reported the development of promoters that act at fruit developing stages such as immature green and mature green periods. In this study, we report novel promoters for gene expression during the green to ripening stages of tomato fruit development. Genes specifically expressed at tomato fruit were selected using microarray data. Subsequent to confirmation of the expression of the selected 12 genes, upstream DNA fragments of the genes LA22CD07, Les.3122.2.A1_a_at and LesAffx.6852.1.S1_at which specifically expressed at fruit were isolated from tomato genomic DNA as promoter regions. Isolated promoter regions were fused with the GUS gene and the resultant constructs were introduced into tomato by agrobacterium-mediated transformation for evaluation of promoter activity in tomato fruit. The two promoters of LA22CD07, and LesAffx.6852.1.S1_at showed strong activity in the fruit, weak activity in the flower and undetectable activity in other tissues. Unlike well-known fruit-ripening specific promoters, such as the E8 promoter, these promoters exhibited strong activity in green fruit in addition to red-ripening fruit, indicating that the promoters are suitable for transgene expression during green to ripening stages of tomato fruit development. KEY MESSAGE: Novel fruit-specific promoters have been identified and are suitable for transgene expression during green to ripening stages of tomato fruit development.  相似文献   

8.
Alternative oxidase (AOX) and uncoupling protein (UCP) are present simultaneously in tomato fruit mitochondria. In a previous work, it has been shown that protein expression and activity of these two energy-dissipating systems exhibit large variations during tomato fruit development and ripening on the vine. It has been suggested that AOX and UCP could be responsible for the respiration increase at the end of ripening and that the cytochrome pathway could be implicated in the climacteric respiratory burst before the onset of ripening. In this study, the use of tomato mutants that fail normal ripening because of deficiencies in ethylene perception or production as well as the treatment of one selected mutant with a chemical precursor of ethylene have revealed that the bioenergetics of tomato fruit development and ripening is under the control of this plant hormone. Indeed, the evolution pattern of bioenergetic features changes with the type of mutation and with the introduction of ethylene into an ethylene-synthesis-deficient tomato fruit mutant during its induced ripening.  相似文献   

9.
Ripening of fleshy fruit: Molecular insight and the role of ethylene   总被引:1,自引:0,他引:1  
Development and ripening in fruit is a unique phase in the life cycle of higher plants which encompasses several stages progressively such as fruit development, its maturation, ripening and finally senescence. During ripening phase, several physiological and biochemical changes take place through differential expression of various genes that are developmentally regulated. Expression and/or suppression of these genes contribute to various changes in the fruit that make it visually attractive and edible. However, in fleshy fruit massive losses accrue during post harvest handling of the fruit which may run into billions of dollars worldwide. This encouraged scientists to look for various ways to save these losses. Genetic engineering appears to be the most promising and cost effective means to prevent these losses. Most fleshy fruit ripen in the presence of ethylene and once ripening has been initiated proceeds uncontrollably. Ethylene evokes several responses during ripening through a signaling cascade and thousands of genes participate which not only sets in ripening but also responsible for its spoilage. Slowing down post ripening process in fleshy fruit has been the major focus of ripening-related research. In this review article, various developments that have taken place in the last decade with respect to identifying and altering the function of ripening-related genes have been described. Role of ethylene and ethylene-responsive genes in ripening of fleshy fruit is also included. Taking clues from the studies in tomato as a model fruit, few case studies are reviewed.  相似文献   

10.
Recent advances in fruit development and ripening: an overview   总被引:5,自引:0,他引:5  
  相似文献   

11.
12.
13.
14.
Loss-of-function ethylene insensitive 2 (EIN2) mutations showed ethylene insensitivity in Arabidopsis, which indicated an essential role of EIN2 in ethylene signaling. However, the function of EIN2 in fruit ripening has not been investigated. To gain a better understanding of EIN2, the temporal regulation of LeEIN2 expres- sion during tomato fruit development was analyzed. The expression of LeEIN2 was constant at different stages of fruit development, and was not regulated by ethylene. Moreover, LeEIN2-silenced tomato fruits were developed using a virus-induced gene silencing fruit system to study the role of LeEIN2 in tomato fruit ripening. Silenced fruits had a delay in fruit development and ripening, related to greatly descended expression of ethylene-related and ripening-related genes in comparison with those of control fruits. These results suggested LeEIN2 positively mediated ethylene signals during tomato development. In addition, there were fewer seeds and Iocules in the silenced fruit than those in the control fruit, like the phenotype of parthenocarpic tomato fruit. The content of auxin and the expression of auxin-regulated gene were declined in silenced fruit, which indicated that EIN2 might be important for crosstalk between ethylene and auxin hormones.  相似文献   

15.
16.
The essential amino acid methionine is a substrate for the synthesis of S-adenosyl-methionine (SAM), that donates its methyl group to numerous methylation reactions, and from which polyamines and ethylene are generated. To study the regulatory role of methionine synthesis in tomato fruit ripening, which requires a sharp increase in ethylene production, we cloned a cDNA encoding cystathionine γ-synthase (CGS) from tomato and analysed its mRNA and protein levels during tomato fruit ripening. CGS mRNA and protein levels peaked at the “turning” stage and declined as the fruit ripened. Notably, the tomato CGS mRNA level in both leaves and fruit was negatively affected by methionine feeding, a regulation that Arabidopsis, but not potato CGS mRNA is subject to. A positive correlation was found between elevated ethylene production and increased CGS mRNA levels during the ethylene burst of the climacteric ripening of tomato fruit. In addition, wounding of pericarp from tomato fruit at the mature green stage stimulated both ethylene production and CGS mRNA level. Application of exogenous methionine to pericarp of mature green fruit increased ethylene evolution, suggesting that soluble methionine may be a rate limiting metabolite for ethylene synthesis. Moreover, treatment of mature green tomato fruit with the ethylene-releasing reagent Ethephon caused an induction of CGS mRNA level, indicating that CGS gene expression is regulated by ethylene. Taken together, these results imply that in addition to recycling of the methionine moieties via the Yang pathway, operating during synthesis of ethylene, de novo synthesis of methionine may be required when high rates of ethylene production are induced.  相似文献   

17.
18.
19.
20.
多聚半乳糖醛酸酶反义基因在转基因番茄中的表达   总被引:3,自引:0,他引:3  
番茄的多聚半乳糖醛酸是一种在果实成熟阶段特异性表达的酶。为了研究它在果实成熟中的作用,将其cDNA与花椰菜花叶病毒35S启动子嵌合后,以反义基因的形式经农杆菌介导导入番茄植株,进一步分析了反义基因的整合与表达。结果表明,在转基因番茄中,反义基因的表达能明显抑制果实内源多聚半乳糖醛酸酶的活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号