首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The eIF4E-binding proteins (4E-BPs) interact with translation initiation factor 4E to inhibit translation. Their binding to eIF4E is reversed by phosphorylation of several key Ser/Thr residues. In Drosophila, S6 kinase (dS6K) and a single 4E-BP (d4E-BP) are phosphorylated via the insulin and target of rapamycin (TOR) signaling pathways. Although S6K phosphorylation is independent of phosphoinositide 3-OH kinase (PI3K) and serine/threonine protein kinase Akt, that of 4E-BP is dependent on PI3K and Akt. This difference prompted us to examine the regulation of d4E-BP in greater detail. Analysis of d4E-BP phosphorylation using site-directed mutagenesis and isoelectric focusing-sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the regulatory interplay between Thr37 and Thr46 of d4E-BP is conserved in flies and that phosphorylation of Thr46 is the major phosphorylation event that regulates d4E-BP activity. We used RNA interference (RNAi) to target components of the PI3K, Akt, and TOR pathways. RNAi experiments directed at components of the insulin and TOR signaling cascades show that d4E-BP is phosphorylated in a PI3K- and Akt-dependent manner. Surprisingly, RNAi of dAkt also affected insulin-stimulated phosphorylation of dS6K, indicating that dAkt may also play a role in dS6K phosphorylation.  相似文献   

2.
It has been reported that platelet-derived growth factor (PDGF)-BB stimulates the synthesis of interleukin (IL)-6 in osteoblasts. In the present study, we investigated whether the phosphatidylinositol 3-kinase (PI3K)/Akt is involved in the PDGF-BB-induced IL-6 synthesis in osteoblast-like MC3T3-E1 cells. PDGF-BB markedly induced the phosphorylation of Akt and GSK-3beta. Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, significantly amplified the synthesis of IL-6 by PDGF-BB. The PDGF-BB-induced GSK-3beta phosphorylation was suppressed by the Akt inhibitor. The IL-6 synthesis stimulated by PDGF-BB was markedly enhanced by LY294002 and wortmannin, inhibitors of PI3K. Wortmannin and LY294002 suppressed the PDGF-BB-induced phosphorylation of Akt and GSK-3beta. Taken together, these results strongly suggest that PI3K/Akt negatively regulates the PDGF-BB-stimulated IL-6 synthesis in osteoblasts.  相似文献   

3.
We reported previously that protein kinase Calpha (PKCalpha), a negative regulator of cell growth in the intestinal epithelium, inhibits cyclin D1 translation by inducing hypophosphorylation/activation of the translational repressor 4E-BP1. The current study explores the molecular mechanisms underlying PKC/PKCalpha-induced activation of 4E-BP1 in IEC-18 nontransformed rat ileal crypt cells. PKC signaling is shown to promote dephosphorylation of Thr(45) and Ser(64) on 4E-BP1, residues directly involved in its association with eIF4E. Consistent with the known role of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway in regulation of 4E-BP1, PKC signaling transiently inhibited PI3K activity and Akt phosphorylation in IEC-18 cells. However, PKC/PKCalpha-induced activation of 4E-BP1 was not prevented by constitutively active mutants of PI3K or Akt, indicating that blockade of PI3K/Akt signaling is not the primary effector of 4E-BP1 activation. This idea is supported by the fact that PKC activation did not alter S6 kinase activity in these cells. Further analysis indicated that PKC-mediated 4E-BP1 hypophosphorylation is dependent on the activity of protein phosphatase 2A (PP2A). PKC signaling induced an approximately 2-fold increase in PP2A activity, and phosphatase inhibition blocked the effects of PKC agonists on 4E-BP1 phosphorylation and cyclin D1 expression. H(2)O(2) and ceramide, two naturally occurring PKCalpha agonists that promote growth arrest in intestinal cells, activate 4E-BP1 in PKC/PKCalpha-dependent manner, supporting the physiological significance of the findings. Together, our studies indicate that activation of PP2A is an important mechanism underlying PKC/PKCalpha-induced inhibition of cap-dependent translation and growth suppression in intestinal epithelial cells.  相似文献   

4.
To understand the role of arachidonic acid (AA) in regulating vascular smooth muscle cell (VSMC) growth, its effects on phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E were studied. Arachidonic acid stimulated phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E in a time-dependent manner in VSMC. Arachidonic acid stimulation of phosphorylation of the above signaling molecules is specific, as these events were not affected by other unsaturated or saturated fatty acids. Metabolic conversion of AA via the LOX/MOX and/or COX pathways, to some extent, was required for its effects on the phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E. In addition, AA increased PI3K activity in a time-dependent manner in VSMC. LY294002, an inhibitor of PI3K, completely blocked AA-induced phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E, suggesting a role for PI3K in these effects. Consistent with its effects on translation initiation signaling events, AA induced global protein synthesis in VSMC and this response was dependent, to some extent, on its metabolism via the LOX/MOX and/or COX pathways, and mediated by the PI3K/Akt/mTOR pathway. Thus, the above observations provide the first biochemical evidence for the role of AA in the activation of translation initiation signaling in VSMC.  相似文献   

5.
To understand the role of eicosanoids in angiogenesis, we have studied the effect of lipoxygenase metabolites of arachidonic acid on human microvascular endothelial cell (HMVEC) DNA synthesis. Among the various lipoxygenase metabolites of arachidonic acid tested, 5(S)-hydroxyeicosatetraenoic acid (5(S)-HETE) induced DNA synthesis in HMVEC. 5(S)-HETE also stimulated Jak-2, STAT-1, and STAT-3 tyrosine phosphorylation and STAT-3-DNA binding activity. Tyrphostin AG490, a specific inhibitor of Jak-2, significantly reduced tyrosine phosphorylation and DNA binding activity of STAT-3 and DNA synthesis induced by 5(S)-HETE. In addition, 5(S)-HETE stimulated phosphatidylinositol 3-kinase (PI3-kinase) activity and phosphorylation of its downstream targets Akt, p70S6K, and 4E-BP1 and their effector molecules ribosomal protein S6 and eIF4E. LY294002 and rapamycin, potent inhibitors of PI3-kinase and mTOR, respectively, also blocked the DNA synthesis induced by 5(S)-HETE. Interestingly, AG490 attenuated 5(S)-HETE-induced PI3-kinase activity and phosphorylation of Akt, p70S6K, ribosomal protein S6, 4E-BP1, and eIF4E. 5(S)-HETE induced the expression of basic fibroblast growth factor 2 (bFGF-2) in a Jak-2- and PI3-kinase-dependent manner. In addition, a neutralizing anti-bFGF-2 antibody completely blocked 5(S)-HETE-induced DNA synthesis in HMVEC. Together these results suggest that 5(S)-HETE stimulates HMVEC growth via Jak-2- and PI3-kinase-dependent induction of expression of bFGF-2. These findings also reveal a cross-talk between Jak-2 and PI3-kinase in response to 5(S)-HETE in HMVEC.  相似文献   

6.
The mechanisms by which insulin-like growth factor I (IGF-I) and insulin regulate eukaryotic initiation factor (eIF)4F formation were examined in the ovine fetus. Insulin infusion increased phosphorylation of eIF4E-binding protein (4E-BP1) in muscle and liver. IGF-I infusion did not alter 4E-BP1 phosphorylation in liver. In muscle, IGF-I increased 4E-BP1 phosphorylation by 27%; the percentage in the gamma-form in the IGF-I group was significantly lower than that in the insulin group. In liver, only IGF-I increased eIF4G. Both IGF-I and insulin increased eIF4E. eIF4G binding in muscle, but only insulin decreased the amount of 4E-BP1 associated with eIF4E. In liver, only IGF-I increased eIF4E. eIF4G binding. Insulin increased the phosphorylation of p70 S6 kinase (p70(S6k)) in both muscle and liver and protein kinase B (PKB/Akt) in muscle, two indicative signal proteins in the phosphatidylinositol (PI) 3-kinase pathway. IGF-I increased PKB/Akt phosphorylation in muscle but had no effect on p70(S6k) phosphorylation in muscle or liver. We conclude that insulin and IGF-I modulate eIF4F formation; however, the two hormones have different regulatory mechanisms. Insulin increases phosphorylation of 4E-BP1 and eIF4E. eIF4G binding in muscle, whereas IGF-I regulates eIF4F formation by increasing total eIF4G. Insulin, but not IGF-I, decreased 4E-BP1 content associated with eIF4E. Insulin regulates translation initiation via the PI 3-kinase-p70(S6k) pathway, whereas IGF-I does so mainly via mechanisms independent of the PI 3-kinase-p70(S6k) pathway.  相似文献   

7.
8.
An important function of growth hormone (GH) is to promote cell and tissue growth, and a key component of these effects is the stimulation of protein synthesis. In this study, we demonstrate that, in H4IIE hepatoma cells, GH acutely activated protein synthesis through signaling via the mammalian target of rapamycin (mTOR) and specifically through the rapamycin-sensitive mTOR complex 1 (mTORC1). GH treatment enhanced the phosphorylation of two targets of mTOR signaling, 4E-BP1 and ribosomal protein S6. Phosphorylation of S6 and 4E-BP1 was maximal at 30-45 min and 10-20 min after GH stimulation, respectively. Both proteins modulate components of the translational machinery. The GH-induced phosphorylation of 4E-BP1 led to its dissociation from eIF4E and increased binding of eIF4E to eIF4G to form (active) eIF4F complexes. The ability of GH to stimulate the phosphorylation of S6 and 4E-BP1 was blocked by rapamycin. GH also led to the dephosphorylation of a third translational component linked to mTORC1, the elongation factor eEF2. Its regulation followed complex biphasic kinetics, both phases of which required mTOR signaling. GH rapidly activated both the MAP kinase (ERK) and PI 3-kinase pathways. Signaling through PI 3-kinase alone was, however, sufficient to activate the downstream mTORC1 pathway. Consistent with this, GH increased the phosphorylation of TSC2, an upstream regulator of mTORC1, at sites that are targets for Akt/PKB. Finally, the activation of overall protein synthesis by GH in H4IIE cells was essentially completely inhibited by wortmannin or rapamycin. These results demonstrate for the first time that mTORC1 plays a major role in the rapid activation of protein synthesis by GH.  相似文献   

9.
To understand the mechanisms of prostaglandin F2alpha (PGF2alpha)-induced protein synthesis in vascular smooth muscle cells (VSMC), we have studied its effect on two major signal transduction pathways: mitogen-activated protein kinases and phosphatidylinositol 3-kinase (PI3-kinase) and their downstream targets ribosomal protein S6 kinase (p70(S6k)) and eukaryotic initiation factor eIF4E and its regulator 4E-BP1. PGF2alpha induced the activities of extracellular signal-regulated kinase 2 (ERK2) and Jun N-terminal kinase 1 (JNK1) groups of mitogen-activated protein kinases, PI3-kinase, and p70(S6k) in a time-dependent manner in growth-arrested VSMC. PGF2alpha also induced eIF4E and 4E-BP1 phosphorylation, global protein synthesis, and basic fibroblast growth factor-2 (bFGF-2) expression in VSMC. Whereas inhibition of PI3-kinase by wortmannin completely blocked the p70(S6k) activation, it only partially decreased the ERK2 activity, and had no significant effect on global protein synthesis and bFGF-2 expression induced by PGF2alpha. Rapamycin, a potent inhibitor of p70(S6k), also failed to prevent PGF2alpha-induced global protein synthesis and bFGF-2 expression, although it partially decreased ERK2 activity. In contrast, inhibition of ERK2 activity by PD 098059 led to a significant loss of PGF2alpha-induced eIF4E and 4E-BP1 phosphorylation, global protein synthesis, and bFGF-2 expression. PGF2alpha-induced phosphorylation of eIF4E and 4E-BP1 was also found to be sensitive to inhibition by both wortmannin and rapamycin. These findings demonstrate that 1) PI3-kinase-dependent and independent mechanisms appear to be involved in PGF2alpha-induced activation of ERK2; 2) PGF2alpha-induced eIF4E and 4E-BP1 phosphorylation appear to be mediated by both ERK-dependent and PI3-kinase-dependent rapamycin-sensitive mechanisms; and 3) ERK-dependent eIF4E phosphorylation but not PI3-kinase-dependent p70(S6k) activation correlates with PGF2alpha-induced global protein synthesis and bFGF-2 expression in VSMC.  相似文献   

10.
Oxidative stress, caused by excess reactive oxygen species (ROS), has been hypothesized to cause or exacerbate skeletal muscle wasting in a number of diseases and chronic conditions. ROS, such as hydrogen peroxide, have the potential to affect signal transduction pathways such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt pathway that regulates protein synthesis. Previous studies have found contradictory outcomes for the effect of ROS on the PI3K/Akt signaling pathway, where oxidative stress can either enhance or inhibit Akt phosphorylation. The apparent contradictions could reflect differences in experimental cell types or types of ROS treatments. We replicate both effects in myotubes of cultured skeletal muscle C2C12 cells, and show that increased oxidative stress can either inhibit or enhance Akt phosphorylation. This differential response could be explained: thiol oxidation of Akt, but not the phosphatases PTEN or PP2A, caused a decline in Akt phosphorylation; whereas the thiol oxidation of Akt, PTEN and PP2A increased Akt phosphorylation. These observations indicate that a more complete understanding of the effects of oxidative stress on a signal transduction pathway comes not only from identifying the proteins susceptible to thiol oxidation, but also their relative sensitivity to ROS.  相似文献   

11.
Signaling mediated by the cellular kinase mammalian target of rapamycin (mTOR) activates cap-dependent translation under normal (nonstressed) conditions. However, translation is inhibited by cellular stress responses or rapamycin treatment, which inhibit mTOR kinase activity. We show that during human cytomegalovirus (HCMV) infection, viral protein synthesis and virus production proceed relatively normally when mTOR kinase activity is inhibited due to hypoxic stress or rapamycin treatment. Using rapamycin inhibition of mTOR, we show that HCMV infection induces phosphorylation of two mTOR effectors, eucaryotic initiation factor 4E (eIF4E) binding protein (4E-BP) and eIF4G. The virally induced phosphorylation of eIF4G is both mTOR and phosphatidylinositol 3-kinase (PI3K) independent, whereas the phosphorylation of 4E-BP is mTOR independent, but PI3K dependent. HCMV infection does not induce mTOR-independent phosphorylation of a third mTOR effector, p70S6 kinase (p70S6K). We show that the HCMV-induced phosphorylation of eIF4G and 4E-BP correlates with the association of eIF4E, the cap binding protein, with eIF4G in the eIF4F translation initiation complex. Thus, HCMV induces mechanisms to maintain the integrity of the eIF4F complex even when mTOR signaling is inhibited.  相似文献   

12.
Insulin has long been assigned a key role in the regulation of growth and metabolism during fetal life. Our prior observations indicated that hepatic insulin signaling is attenuated in the late-gestation fetal rat. Therefore, we studied the perinatal ontogeny of hepatic insulin signaling extending from phosphatidylinositol 3-kinase (PI3K) to the ribosome. Initial studies demonstrated markedly decreased insulin-mediated activation of ribosomal protein S6 kinase 1 (S6K1) in the fetus. We found a similar pattern in the regulation of Akt, a kinase upstream from S6K1. Insulin produced minimal activation of insulin receptor substrate (IRS)-1-associated PI3K activity in fetal liver. A modest IRS-2-associated response was seen in the fetus. However, levels of both IRS-1 and IRS-2 were very low in fetal liver relative to adult liver. IRS-1 content and insulin responsiveness of PI3K, Akt, and S6K1 showed a transition to the adult phenotype during the first several postnatal weeks. Examination of downstream insulin signaling to the translational apparatus showed marked attenuation, relative to the adult, of fetal hepatic insulin-mediated phosphorylation of 4E-BP1, the regulatory protein for the eukaryotic initiation factor eIF4E, and ribosomal protein S6. The mammalian target of rapamycin (mTOR), a key integrator of nutritional and metabolic regulation of translation, was present in low amounts, was hypophosphorylated, and was not insulin sensitive in the fetus. Our results indicate that protein synthesis during late-gestation liver development may be mTOR and insulin independent. Reexamination of the role of insulin in fetal liver physiology may be warranted.  相似文献   

13.
The present study determined whether acute alcohol (ethanol; EtOH) intoxication in rats impaired components of the insulin- and IGF-I-signaling pathway in skeletal muscle. Rats were administered EtOH, and 2.5 h thereafter either insulin, IGF-I, or saline was injected and the gastrocnemius removed. EtOH did not alter the total amount or tyrosine phosphorylation of the insulin receptor, IGF-I receptor, insulin receptor substrate (IRS)-1, or protein kinase B (PKB)/Akt under basal or hormone-stimulated conditions. In contrast, the ability of insulin or IGF-I to phosphorylate T389 and T421/S424 on S6K-1 was markedly diminished by EtOH, and these changes were associated with a reduction in the phosphorylation of the ribosomal protein S6. Under basal conditions, EtOH altered the distribution of eukaryotic initiation factor (eIF)4E, as evidenced by a decreased amount of active eIF4E. eIF4G complex, an increased amount of inactive eIF4E. 4E-binding protein (BP)1 complex, and decreased 4E-BP1 phosphorylation. In contrast, EtOH did not impair the ability of either hormone to reverse the changes in eIF4E distribution or 4E-BP1 phosphorylation. Pretreatment with a glucocorticoid receptor antagonist was unable to attenuate either the basal EtOH-induced changes in eIF4E distribution or the impaired ability of IGF-I to stimulate S6K1 and S6 phosphorylation. Hence, acute alcohol intoxication alters selected aspects of translational control under both basal and anabolic hormone-stimulated conditions in skeletal muscle in a glucocorticoid-independent manner.  相似文献   

14.
BACKGROUND: The mammalian target of rapamycin, mTOR, is a serine/threonine kinase that controls cell growth and proliferation via the translation regulators eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). We recently identified a TOR signaling (TOS) motif in the N terminus of S6K1 and the C terminus of 4E-BP1 and demonstrated that in S6K1, the TOS motif is necessary to facilitate mTOR signaling to phosphorylate and activate S6K1. However, it is unclear how the TOS motif in S6K1 and 4E-BP1 mediates mTOR signaling. RESULTS: Here, we show that a functional TOS motif is required for 4E-BP1 to bind to raptor (a recently identified mTOR-interacting protein), for 4E-BP1 to be efficiently phosphorylated in vitro by the mTOR/raptor complex, and for 4E-BP1 to be phosphorylated in vivo at all identified mTOR-regulated sites. mTOR/raptor-regulated phosphorylation is necessary for 4E-BP's efficient release from the translational initiation factor eIF4E. Consistently, overexpression of a mutant of 4E-BP1 containing a single amino acid change in the TOS motif (F114A) reduces cell size, demonstrating that mTOR-dependent regulation of cell growth by 4E-BP1 is dependent on a functional TOS motif. CONCLUSIONS: Our data demonstrate that the TOS motif functions as a docking site for the mTOR/raptor complex, which is required for multisite phosphorylation of 4E-BP1, eIF4E release from 4E-BP1, and cell growth.  相似文献   

15.
The innate immune response elicited by Helicobacter pylori in the human gastric mucosa involves a range of cellular signalling pathways, including those implicated in metabolism regulation. In this study, we analysed H. pylori-induced PI3K/Akt/mTOR signalling, which regulates glycolysis and protein synthesis and associates thereby with cellular energy- and nutrients-consuming processes such as growth and proliferation. The immunohistochemical analysis demonstrated that Akt kinase phosphorylation is abundant in gastric biopsies obtained from gastritis, gastric adenoma and adenocarcinoma patients. Infection with H. pylori led to the phosphorylation of Akt effectors mTOR and S6 in a type 4 secretion system (T4SS)-independent manner in AGS cells. We observed that the activation of these molecules was dependent on PI3K and the Src family tyrosine kinases. Furthermore, H. pylori induced the phosphorylation of 4E-BP1 and eIF4E and suppressed the phosphorylation of eEF2, which are important regulators of protein synthesis. Inhibition of PI3K and Akt kinase prevented the phosphorylation of 4E-BP1, suggesting that PI3K signalling is involved in the regulation of translation initiation during H. pylori infection. Metabolic labelling showed that infected cells had higher rates of [35S]methionine/cysteine incorporation, and this effect could be prevented using LY294002, an PI3K inhibitor. Thus, H. pylori activates PI3K/Akt signalling, mTOR, eIFs and protein translation, which might impact H. pylori-related gastric pathophysiology.  相似文献   

16.
Amino acids are unique anabolic agents in that they nutritively signal to mRNA translation initiation and serve as substrates for protein synthesis in skeletal muscle. Glucocorticoid excess antagonizes the anabolic action of amino acids on protein synthesis in laboratory animals. To examine whether excessive glucocorticoids modulate mixed amino acid-signaled translation initiation in human skeletal muscle, we infused an amino acid mixture (10% Travasol) systemically to 16 young healthy male volunteers for 6 h in the absence (n = 8) or presence (n = 8) of glucocorticoid excess (dexamethasone 2 mg orally every 6 h for 3 days). Vastus lateralis muscles were biopsied before and after amino acid infusion, and the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1), ribosomal protein S6 kinase (p70(S6K)), and eIF2alpha and the guanine nucleotide exchange activity of eIF2B were measured. Systemic infusion of mixed amino acids significantly stimulated the phosphorylation of 4E-BP1 (P < 0.04) and p70(S6K) (P < 0.001) and the dephosphorylation of eIF2alpha (P < 0.003) in the control group. Dexamethasone treatment did not alter the basal phosphorylation state of 4E-BP1, p70(S6K), or eIF2alpha; however, it abrogated the stimulatory effect of amino acid infusion on the phosphorylation of 4E-BP1 (P = 0.31) without affecting amino acid-induced phosphorylation of p70(S6K) (P = 0.002) or dephosphorylation of eIF2alpha (P = 0.003). Neither amino acid nor dexamethasone treatment altered the guanine nucleotide exchange activity of eIF2B. We conclude that changes of amino acid concentrations within the physiological range stimulate mRNA translation by enhancing the binding of mRNA to the 43S preinitiation complex, and the activity of p70(S6K) and glucocorticoid excess blocks the former action in vivo in human skeletal muscle.  相似文献   

17.
We report that late in a simian virus 40 (SV40) infection in CV-1 cells, there are significant decreases in phosphorylations of two mammalian target of rapamycin (mTOR) signaling effectors, the eIF4E-binding protein (4E-BP1) and p70 S6 kinase (p70S6K). The hypophosphorylation of 4E-BP1 results in 4E-BP1 binding to eIF4E, leading to the inhibition of cap-dependent translation. The dephosphorylation of 4E-BP1 is specifically mediated by SV40 small t antigen and requires the protein phosphatase 2A binding domain but not an active DnaJ domain. Serum-starved primary African green monkey kidney (AGMK) cells also showed decreased phosphorylations of mTOR, 4E-BP1, and p70S6K at late times in infection (48 h postinfection [hpi]). However, at earlier times (12 and 24 hpi), in AGMK cells, phosphorylated p70S6K was moderately increased, correlating with a significant increase in phosphorylation of the p70S6K substrate, ribosomal protein S6. Hyperphosphorylation of 4E-BP1 at early times could not be determined, since hyperphosphorylated 4E-BP1 was present in mock-infected AGMK cells. Elevated levels of phosphorylated eIF4G, a third mTOR effector, were detected in both CV-1 and AGMK cells at all times after infection, indicating that eIF4G phosphorylation was induced throughout the infection and unaffected by small t antigen. The data suggest that during SV40 lytic infection in monkey cells, the phosphorylations of p70S6K, S6, and eIF4G are increased early in the infection (12 and 24 hpi), but late in the infection (48 hpi), the phosphorylations of mTOR, p70S6K, and 4E-BP1 are dramatically decreased by a mechanism mediated, at least in part, by small t antigen.  相似文献   

18.
Chronic septic abscess formation causes an inhibition of protein synthesis in gastrocnemius not observed in rats with a sterile abscess. Inhibition is associated with an impaired mRNA translation initiation that can be ameliorated by elevating IGF-I but not insulin. The present study investigated the ability of IGF-I signaling to stimulate protein synthesis in gastrocnemius by accelerating mRNA translation initiation. Experiments were performed in perfused hindlimb preparations from rats 5 days after induction of a septic abscess. Protein synthesis in gastrocnemius from septic rats was accelerated twofold by the addition of IGF-I (10 nM) to perfusate. IGF-I increased the phosphorylation of translation repressor 4E-binding protein-1 (4E-BP1). Hyperphosphorylation of 4E-BP1 in response to IGF-I resulted in its dissociation from the inactive eukaryotic initiation factor (eIF) 4E.4E-BP1 complex. Assembly of the active eIF4F complex (as assessed by the association eIF4G with eIF4E) was increased twofold by IGF-I in the perfusate. In addition, phosphorylation of eIF4G and ribosomal protein S6 kinase-1 (S6K1) was also enhanced by IGF-I. Activation of mammalian target of rapamycin, an upstream kinase implicated in phosphorylating both 4E-BP1 and S6K1, was also observed. Thus the ability of IGF-I to accelerate protein synthesis during sepsis may be related to a stimulation of signaling to multiple steps in translation initiation with an ensuing increased phosphorylation of eIF4G, eIF4E availability, and S6K1 phosphorylation.  相似文献   

19.
Recent evidence supports that TNF-alpha, long considered a catabolic factor, may also have a physiological function in skeletal muscle. The catabolic view, mainly based on correlative studies in human and in vivo animal models, was challenged by experiments with myoblasts, in which TNF-alpha induced differentiation. The biological effects of TNF-alpha in differentiated muscle, however, remain poorly understood. In the present study, we tested whether TNF-alpha has growth-promoting effects in myotubes, and we characterized the mechanisms leading to these effects. Treatment of C(2)C(12) myotubes with TNF-alpha for 24 h increased protein synthesis (PS) and enhanced cellular dehydrogenase activity by 22 and 26%, respectively, without changing cell numbers. These effects were confirmed in myotubes differentiated from primary rat myoblasts. TNF-alpha activated two signaling cascades: 1) ERK1/2 and its target eIF4E and 2) Akt and its downstream effectors GSK-3, p70(S6K), and 4E-BP1. TNF-alpha-induced phosphorylation of Akt, and ERK1/2 was inhibited by an antibody against TNF-alpha receptor 1 (TNF-R1). PD-98059 pretreatment abolished TNF-alpha-induced phosphorylation of ERK1/2 and eIF4E, whereas PS was only partially inhibited. LY-294002 completely abolished TNF-alpha-induced stimulation of PS as well as phosphorylation of Akt and its downstream targets GSK-3, p70(S6K), and 4E-BP1. Rapamycin inhibited TNF-alpha-induced phosphorylation of the mTOR C1 target p70(S6K) without altering TNF-alpha-induced PS and 4E-BP1 phosphorylation. In conclusion, our results provide evidence that TNF-alpha enhances PS in myotubes and that this is based on enhanced protein translation mediated by the TNF-R1 and PI3K-Akt and MEK-ERK signaling cascades.  相似文献   

20.
Elevations in free fatty acids (FFAs) impair glucose uptake in skeletal muscle. However, there is no information pertaining to the effect of elevated circulating lipids on either basal protein synthesis or the anabolic effects of leucine and insulin-like growth factor I (IGF-I). In chronically catheterized conscious rats, the short-term elevation of plasma FFAs by the 5-h infusion of heparin plus Intralipid decreased muscle protein synthesis by approximately 25% under basal conditions. Lipid infusion was associated with a redistribution of eukaryotic initiation factor (eIF)4E from the active eIF4E.eIF4G complex to the inactive eIF4E.4E-BP1 complex. This shift was associated with a decreased phosphorylation of eIF4G but not 4E-BP1. Lipid infusion did not significantly alter either the total amount or phosphorylation state of mTOR, TSC2, S6K1, or the ribosomal protein S6 under basal conditions. In control rats, oral leucine increased muscle protein synthesis. This anabolic response was not impaired by lipid infusion, and no defects in signal transduction pathways regulating translation initiation were detected. In separate rats that received a bolus injection of IGF-I, lipid infusion attenuated the normal redistribution of eIF4E from the active to inactive complex and largely prevented the increased phosphorylation of 4E-BP1, eIF4G, S6K1, and S6. This IGF-I resistance was associated with enhanced Ser(307) phosphorylation of insulin receptor substrate-1 (IRS-1). These data indicate that the short-term elevation of plasma FFAs impairs basal protein synthesis in muscle by altering eIF4E availability, and this defect may be related to impaired phosphorylation of eIF4G, not 4E-BP1. Moreover, hyperlipidemia impairs IGF-I action but does not produce leucine resistance in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号