首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lin X  Minamisawa N  Takechi K  Zhang W  Sato H  Takio S  Tsukaya H  Takano H 《Planta》2008,228(4):601-608
ANGUSTIFOLIA (AN), a plant homolog of C-terminal binding protein, controls the polar elongation of leaf cells and the trichome-branching pattern in Arabidopsis thaliana. In the present study, degenerate PCR was used to isolate an ortholog of AN, referred to as LgAN, from larch (Larix gmelinii). The LgAN cDNA is predicted to encode a protein of 646 amino acids that shows striking sequence similarity to AN proteins from other plants. The predicted amino acid sequence has a conserved NAD-dependent 2-hydroxy acid dehydrogenase (D2-HDH) motif and a plant AN-specific LxCxE/D motif at its N-terminus, as well as a plant-specific long C-terminal region. The LgAN gene is a single-copy gene that is expressed in all larch tissues. Expression of the LgAN cDNA rescued the leaf width and trichome-branching pattern defects in the angustifolia-1 (an-1) mutant of Arabidopsis, showing that the LgAN gene has effects complementary to those of AN. These results suggest that the LgAN gene has the same function as the AN gene.  相似文献   

2.
Using 3′-RACE and 5′-RACE, we have cloned and sequenced the genomic gene and complete cDNA encoding l-glutamine d-fructose 6-phosphate amidotransferase (GFAT) from the edible straw mushroom, Volvariella volvacea. Gfat contains five introns, and encodes a predicted protein of 697 amino acids that is homologous to other reported GFAT sequences. Southern hybridization indicated that a single gfat gene locus exists in the V. volvacea genome. Recombinant native V. volvacea GFAT enzyme, over-expressed using Escherichia coli and partially purified, had an estimated molecular mass of 306 kDa and consisted of four equal-sized subunits of 77 kD. Reciprocal plots revealed K m values of 0.55 and 0.75 mM for fructose 6-phosphate and l-glutamine, respectively. V. volvacea GFAT activity was inhibited by the end-product of the hexosamine pathway, UDP-GlcNAc, and by the glutamine analogues N 3-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid and 2-amino-2-deoxy-d-glucitol-6-phosphate.  相似文献   

3.
The excretion of the aromatic amino acid l-tyrosine was achieved by manipulating three gene targets in the wild-type Escherichia coli K12: The feedback-inhibition-resistant (fbr) derivatives of aroG and tyrA were expressed on a low-copy-number vector, and the TyrR-mediated regulation of the aromatic amino acid biosynthesis was eliminated by deleting the tyrR gene. The generation of this l-tyrosine producer, strain T1, was based only on the deregulation of the aromatic amino acid biosynthesis pathway, but no structural genes in the genome were affected. A second tyrosine over-producing strain, E. coli T2, was generated considering the possible limitation of precursor substrates. To enhance the availability of the two precursor substrates phosphoenolpyruvate and erythrose-4-phosphate, the ppsA and the tktA genes were over-expressed in the strain T1 background, increasing l-tyrosine production by 80% in 50-ml batch cultures. Fed-batch fermentations revealed that l-tyrosine production was tightly correlated with cell growth, exhibiting the maximum productivity at the end of the exponential growth phase. The final l-tyrosine concentrations were 3.8 g/l for E. coli T1 and 9.7 g/l for E. coli T2 with a yield of l-tyrosine per glucose of 0.037 g/g (T1) and 0.102 g/g (T2), respectively.  相似文献   

4.
Lactobacillus casei is a lactic acid bacterium that produces L-lactate as the main product of sugar fermentation via L-lactate dehydrogenase (Ldh1) activity. In addition, small amounts of the D-lactate isomer are produced by the activity of a D-hydroxycaproate dehydrogenase (HicD). Ldh1 is the main L-lactate producing enzyme, but mutation of its gene does not eliminate L-lactate synthesis. A survey of the L. casei BL23 draft genome sequence revealed the presence of three additional genes encoding Ldh paralogs. In order to study the contribution of these genes to the global lactate production in this organism, individual, as well as double mutants (ldh1 ldh2, ldh1 ldh3, ldh1 ldh4 and ldh1 hicD) were constructed and lactic acid production was assessed in culture supernatants. ldh2, ldh3 and ldh4 genes play a minor role in lactate production, as their single mutation or a mutation in combination with an ldh1 deletion had a low impact on L-lactate synthesis. A Deltaldh1 mutant displayed an increased production of D-lactate, which was probably synthesized via the activity of HicD, as it was abolished in a Deltaldh1 hicD double mutant. Contrarily to HicD, no Ldh1, Ldh2, Ldh3 or Ldh4 activities could be detected by zymogram assays. In addition, these assays revealed the presence of extra bands exhibiting D-/L-lactate dehydrogenase activity, which could not be attributed to any of the described genes. These results suggest that L. casei BL23 possesses a complex enzymatic system able to reduce pyruvic to lactic acid.  相似文献   

5.
Intracellular precursor supply is a critical factor for amino acid productivity of Corynebacterium glutamicum. To test for the effect of improved pyruvate availability on l-lysine production, we deleted the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex (PDHC) in the l-lysine-producer C. glutamicum DM1729 and characterised the resulting strain DM1729-BB1 for growth and l-lysine production. Compared to the host strain, C. glutamicum DM1729-BB1 showed no PDHC activity, was acetate auxotrophic and, after complete consumption of the available carbon sources glucose and acetate, showed a more than 50% lower substrate-specific biomass yield (0.14 vs 0.33 mol C/mol C), an about fourfold higher biomass-specific l-lysine yield (5.27 vs 1.23 mmol/g cell dry weight) and a more than 40% higher substrate-specific l-lysine yield (0.13 vs 0.09 mol C/mol C). Overexpression of the pyruvate carboxylase or diaminopimelate dehydrogenase genes in C. glutamicum DM1729-BB1 resulted in a further increase in the biomass-specific l-lysine yield by 6 and 56%, respectively. In addition to l-lysine, significant amounts of pyruvate, l-alanine and l-valine were produced by C. glutamicum DM1729-BB1 and its derivatives, suggesting a surplus of precursor availability and a further potential to improve l-lysine production by engineering the l-lysine biosynthetic pathway. This study is dedicated to Prof. Dr. Hermann Sahm on the occasion of his 65th birthday.  相似文献   

6.
7.
8.
A single MAT1-2-1 gene was identified from a mating pair of the filamentous ascomycete Colletotrichum lindemuthianum. The MAT1-2-1 genes from both mating partners carried an open reading frame (ORF) of 870 bp encoding a putative protein of 290 amino acids that includes the highly conserved high mobility group (HMG) domain typical of the fungal MAT1-2-1 genes. Three introns were confirmed within the C. lindemuthianum ORF, two of which were found to be conserved relative to a previously reported MAT1-2-1 gene from C. gloeosporioides. The amino acid sequence of the HMG domain from C. lindemuthianum MAT1-2-1 was also compared with those from other ascomycetes. These results suggest that although the MAT1-2-1 genes are highly conserved among ascomycetes, the mechanism which defines mating partners in the genus Colletotrichum is distinct to the idiomorph system described for other members of this phylum.  相似文献   

9.
Achromobacter xylosoxidans is known to utilize d-glucose via the modified Entner-Doudoroff pathway. Although d-gluconate dehydratase produced from this bacterium was purified and partially characterized previously, a gene that encodes this enzyme has not yet been identified. To obtain protein information on bacterial d-gluconate dehydratase, we partially purified d-gluconate dehydratase in A. xylosoxidans and investigated its biochemical properties. Two degenerate primers were designed based on the N-terminal amino acid sequence of the partially purified d-gluconate dehydratase. Through PCR performed using degenerate primers, a 1,782-bp DNA sequence encoding the A. xylosoxidans d-gluconate dehydratase (gnaD) was obtained. The deduced amino acid sequence of A. xylosoxidans gnaD showed strong similarity with that of proteins belonging to the dihydroxy-acid dehydratase/phosphogluconate dehydratase family (COG0129). This is in contrast to the archaeal d-gluconate dehydratase, which belongs to the enolase superfamily (COG4948). The phylogenetic tree showed that A. xylosoxidans d-gluconate dehydratase is closer to the 6-phosphogluconate dehydratase than the dihydroxy-acid dehydratase. Interestingly, a clade containing A. xylosoxidans enzyme was clustered with proteins annotated as a second and a third dihydroxy-acid dehydratase in the genomes of Clostridium acetobutylicum (Cac_ilvD2) and Streptomyces ceolicolor (Sco_ilvD2, Sco_ilvD3), indicating that the function of these enzymes is the dehydration of d-gluconate.  相似文献   

10.
11.
A novel nicotinamide adenine dinucleotide phosphate-dependent carbonyl reductase, 3-quinuclidinone reductase, was isolated from Rhodotorula rubra JCM3782. The enzyme catalyzes the asymmetric reduction of 3-quinuclidinone to (R)-3-quinuclidinol. The gene encoding the enzyme was also cloned and sequenced. A 819-bp nucleotide fragment was confirmed to be the gene encoding the 3-quinuclidinone reductase by agreement of the internal amino acid sequences of the purified enzyme. The gene encodes a total of 272 amino acid residues, and the deduced amino acid sequence shows similarity to those of several short-chain dehydrogenase/reductase family proteins. An expression vector, pWKLQ, which contains the full length 3-quinuclidinone reductase gene was constructed. Using Escherichia coli cells coexpressing the 3-quinuclidinone reductase and glucose dehydrogenase (cofactor regeneration enzyme) genes, 618 mM 3-quinuclidinone was almost stiochiometrically converted to (R)-3-quinuclidinol with an >99.9% enantiomeric excess within 21 h of reaction.  相似文献   

12.
13.
Two uvrA-like genes, designated uvrA1 and uvrA2, that may be involved in nucleotide excision repair in Xanthomonas axonopodis pv. citri (X. a. pv. citri) strain XW47 were characterized. The uvrA1 gene was found to be 2,964 bp in length capable of encoding a protein of 987 amino acids. The uvrA2 gene was determined to be 2,529 bp with a coding potential of 842 amino acids. These two proteins share 71 and 39% identity, respectively, in amino acid sequence with the UvrA protein of Escherichia coli. Analyses of the deduced amino acid sequence revealed that UvrA1 and UvrA2 have structures characteristic of UvrA proteins, including the Walker A and Walker B motifs, zinc finger DNA binding domains, and helix-turn-helix motif with a polyglycine hinge region. The uvrA1 or uvrA2 mutant, constructed by gene replacement, was more sensitive to DNA-damaging agents methylmethane sulfonate (MMS), mitomycin C (MMC), or ultraviolet (UV) than the wild type. The uvrA1 mutant was four orders of magnitude more sensitive to UV irradiation and two orders of magnitude more sensitive to MMS than the uvrA2 mutant. The uvrA1uvrA2 double mutant was one order of magnitude more sensitive to MMS, MMC, or UV than the uvrA1 single mutant. These results suggest that UvrA1 plays a more important role than UvrA2 in DNA repair in X. a. pv. citri. Both uvrA1 and uvrA2 genes were found to be constitutively expressed in the wild type and lexA1 or lexA2 mutant of X. a. pv. citri, and treatment of these cells with sublethal dose of MMC did not alter the expression of these two genes. Results of electrophoresis mobility shift assays revealed that LexA1 or LexA2 does not bind to either the uvrA1 or the uvrA2 promoter. These results suggest that uvrA expression in X. a. pv. citri is not regulated by the SOS response system.  相似文献   

14.
15.
We recently engineered the wild type of Corynebacterium glutamicum for the growth-decoupled production of L: -valine from glucose by inactivation of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes, encoding the L-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. Based on the first generation of pyruvate-dehydrogenase-complex-deficient C. glutamicum strains, a second generation of high-yield L-valine producers was constructed by successive deletion of the genes encoding pyruvate:quinone oxidoreductase, phosphoglucose isomerase, and pyruvate carboxylase and overexpression of ilvBNCE. In fed-batch fermentations at high cell densities, the newly constructed strains produced up to 410 mM (48 g/l) L-valine, showed a maximum yield of 0.75 to 0.86 mol/mol (0.49 to 0.56 g/g) of glucose in the production phase and, in contrast to the first generation strains, excreted neither pyruvate nor any other by-product tested.  相似文献   

16.
AIM: A novel NADP(+)-dependent L-1-amino-2-propanol dehydrogenase was isolated from Rhodococcus erythropolis MAK154, and characterized. METHODS AND RESULTS: The enzyme was inducibly produced on cultivation with aminoalcohols such as 1-amino-2-propanol, 1-amino-2-butanol and 2-aminocyclohexanol. The enzyme catalyses the NADP(+)-dependent oxidation of several aminoalcohols, and also the NADPH-dependent asymmetric reduction of an aminoketone compound to a double chiral aminoalcohol, d-pseudoephedrine. Amino acid sequence analysis showed that the enzyme might belong to the short-chain dehydrogenase/reductase family. CONCLUSIONS: NADP(+)-dependent L-1-amino-2-propanol dehydrogenase isolated from R. erythropolis MAK154 reversibly catalysed dehydrogenation of aminoalcohols, and exhibited a unique sterospecifity for the reduction reaction. SIGNIFICANCE AND IMPACT OF THE STUDY: The enzyme is a promising catalyst for the production of double chiral compound, d-pseudoephedrine, from prochiral substrate.  相似文献   

17.
18.
Expression of a heterologous l-lactate dehydrogenase (l-ldh) gene enables production of optically pure l-lactate by yeast Saccharomyces cerevisiae. However, the lactate yields with engineered yeasts are lower than those in the case of lactic acid bacteria because there is a strong tendency for ethanol to be competitively produced from pyruvate. To decrease the ethanol production and increase the lactate yield, inactivation of the genes that are involved in ethanol production from pyruvate is necessary. We conducted double disruption of the pyruvate decarboxylase 1 (PDC1) and alcohol dehydrogenase 1 (ADH1) genes in a S. cerevisiae strain by replacing them with the bovine l-ldh gene. The lactate yield was increased in the pdc1/adh1 double mutant compared with that in the single pdc1 mutant. The specific growth rate of the double mutant was decreased on glucose but not affected on ethanol or acetate compared with in the control strain. The aeration rate had a strong influence on the production rate and yield of lactate in this strain. The highest lactate yield of 0.75 g lactate produced per gram of glucose consumed was achieved at a lower aeration rate.  相似文献   

19.
A full-length cDNA encoding ribosome-inactivating/antiviral protein (RIP/AVP)from the leaves of Bougainvillea x buttiana was isolated.The cDNA consisted of 1364 nucleotides with an open reading frame (ORF)of 960 nucleotides encoding a 35.49 kDa protein of 319 amino acids.The deduced amino acid sequence has a putative active domain conserved in RIPs/AVPs and shows a varying phylogenetic relationship to the RIPs from other plant species.The deduced protein has been designated BBAP1 (Bougainvillea x buttiana antiviral protein1).The ORF was cloned into an expression vector and expressed in E.coli as a fusion protein of approximately 78 kDa.The cleaved and purified recombinant BBAP1 exhibited ribosome-inhibiting rRNA N-glycosidase activity,and imparted a high level of resistance against the tobacco mosaic virus (TMV).  相似文献   

20.
The xylitol dehydrogenase-encoding Arxula adeninivorans AXDH gene was isolated and characterized. The gene includes a coding sequence of 1107 bp encoding a putative 368 amino acid protein of 40.3 kDa. The identity of the gene was confirmed by a high degree of homology of the derived amino acid sequence to that of xylitol dehydrogenases from different sources. The gene activity was regulated by carbon source. In media supplemented with xylitol, D-sorbitol and D-xylose induction of the AXDH gene and intracellular accumulation of the encoded xylitol dehydrogenase was observed. This activation pattern was confirmed by analysis of AXDH promoter – GFP gene fusions. The enzyme characteristics were analysed from isolates of native strains as well as from those of recombinant strains expressing the AXDH gene under control of the strong A. adeninivorans-derived TEF1 promoter. For both proteins, a molecular mass of ca. 80 kDa was determined corresponding to a dimeric structure, an optimum pH at 7.5 and a temperature optimum at 35 °C. The enzyme oxidizes polyols like xylitol and D-sorbitol whereas the reduction reaction is preferred when providing D-xylulose, D-ribulose and L-sorbose as substrates. Enzyme activity exclusively depends on NAD+ or NADH as coenzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号