首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bactericidal activity of polymorphonuclear leucocyte (PMNL) against infection stimulates cytoskeletal changes accompanied with alteration in adhesion and locomotion. Microfilaments, the motile apparatus is known to regulate these changes by polymerization of monomeric G-actin to fibrous F-actin. PMNL from chronic myeloid leukemia (CML) patients have been reported to be defective in locomotion in response to synthetic peptide, n-formyl-methionyl-leucyl-phenylalanine (fMLP) but the mechanism leading to defective locomotion and their spatial reorganization remains unclear. Therefore, in order to study the cause of defective motility of PMNL from CML patients the spatial distribution and reorganization of microfilaments and microtubules in response to fMLP have been examined by transmission electron (TEM) and scanning electron microscopy (SEM). Under SEM, the PMNL-CML surface appeared smoother with reduced ruffling resulting in rounding off cells with lesser polarized morphology. Unstimulated PMNL from normal as well as CML subjects showed shorter and fewer microtubules and evenly distributed microfilaments as compared to fMLP stimulated PMNL. It is proposed that the cause of defective locomotion was due to reduced surface activity as a consequence of altered cytoskeletal configuration. This phenomenon seems to be related to impaired functional appendages and as a whole led to the defective cell motility and hence reduced chemotaxis in PMNL from CML patients.  相似文献   

2.
Radhika V  Naik NR  Advani SH  Bhisey AN 《Cytometry》2000,42(6):379-386
Chronic myeloid leukemia (CML), a hematopoietic stem cell disorder, is characterized by the presence of Philadelphia chromosome (Ph1). Earlier studies have shown that various functions, such as chemotaxis, fluid phase pinocytosis, phagocytosis, and degranulation in response to chemotactic peptide formyl-methionyl-leucyl-phenylalanine (fMLP), were defective in polymorphonuclear leukocytes (PMNL) from CML patients. These functions depend on actin microfilaments (MF). Further studies showed that fMLP-induced actin polymerization was lower in CML PMNL. To see if this defect is specific to stimulation by fMLP alone or is a global phenomenon involving other chemoattractant receptors, chemotaxis and actin polymerization were studied in response to fMLP, an analog of fMLP, formyl-methionine-1 aminocyclooctane 1 carboxylic acid-phenyalanine-O-methionine (FACC8), platelet-activating factor (PAF), and leukotriene B4 (LTB4). These compounds bind to different chemoattractant receptors. Chemotaxis and actin polymerization in response to all four chemoattractants were significantly lower in CML PMNL compared with PMNL from normal subjects and were differentially affected for the different chemoattractants. These results suggest a global phenomenon involving all four chemoattractant-stimulated pathways. This lower amount of F-actin may be responsible for the defective chemotaxis seen in these cells.  相似文献   

3.
Formins constitute a large family of proteins that regulate the dynamics and organization of both the actin and microtubule cytoskeletons. Previously we showed that the formin mDia1 helps tether microtubules at the cell cortex, acting downstream of the ErbB2 receptor tyrosine kinase. Here we further study the contributions of mDia1 and its two most closely related formins, mDia2 and mDia3, to cortical microtubule capture and ErbB2-dependent breast carcinoma cell migration. We find that depletion of each of these three formins strongly disrupts chemotaxis without significantly affecting actin-based structures. Further, all three formins are required for formation of cortical microtubules in a nonredundant manner, and formin proteins defective in actin polymerization remain active for microtubule capture. Using affinity purification and mass spectrometry analysis, we identify differential binding partners of the formin-homology domain 2 (FH2) of mDia1, mDia2, and mDia3, which may explain their nonredundant roles in microtubule capture. The FH2 domain of mDia1 specifically interacts with Rab6-interacting protein 2 (Rab6IP2). Further, mDia1 is required for cortical localization of Rab6IP2, and concomitant depletion of Rab6IP2 and IQGAP1 severely disrupts cortical capture of microtubules, demonstrating the coinvolvement of mDia1, IQGAP1, and Rab6IP2 in microtubule tethering at the leading edge.  相似文献   

4.
The incubation of human leukocytes with ascorbic acid increased chemotaxis of the cells. In addition, ascorbic acid promoted the assembly of intracellular polymorphonuclear leukocyte (PMN) with colchicine blocked the effect of ascorbic acid on promoting microtubule assembly. Not only did ascorbic acid promote the assembly of microtubules in vivo, but it enhanced the assembly of bovine brain tubulin into microtubules in vitro as quantitated by a glass-fiber filtration assay and by promotion of viscosity changes. The enhancement in leukocyte mobility by ascorbate at concentrations achievable in normal tissues correlates with its ability to assemble microtubule organelles.  相似文献   

5.
The inflammatory response is one of the most dramatic examples of directed cell movement in nature. Inflammation is triggered at the site of injury and results in the migration of immune cells to the site to protect the host from infection. We have devised an in vivo inflammation assay using translucent zebrafish embryos, which allow live imaging and pharmacological manipulation of macrophage chemotaxis to wounds inflicted with a laser. Using this assay, we test the role of the microtubule cytoskeleton in macrophage chemotaxis in vivo using nocodazole to disrupt microtubule polymerization. We find that de-stabilisation of microtubules with nocodazole impairs macrophage recruitment to wounds, but that addition of the Rho kinase inhibitor Y-27632 suppresses these effects and restores the recruitment of macrophages to wounds. Taken together, these results suggest that destabilizing microtubules activates Rho kinase and that this increase in Rho kinase activity interferes with leukocyte recruitment in vivo.  相似文献   

6.
The impact of triethyl lead chloride was studied on: (i) the in vitro assembly and disassembly of microtubules from porcine brain by turbidometry and electron microscopy, (ii) the microtubule system of living mammalian cells using immunofluorescence microscopy, (iii) cell motility and chemotaxis employing the methods of phagokinetic track formation and the Boyden chamber assay, respectively, and (iv) thiol groups of the protein tubulin by their titration in the presence and absence of the organic lead compound. Triethyl lead chloride inhibited microtubule assembly and depolymerized preformed microtubules in vitro and in living cells. Random motility of cells was not markedly inhibited by triethyl lead chloride, whereas chemotaxis (directed cellular movement) was strongly inhibited. Triethyl lead chloride was found to interact with 2 thiol groups of the tubulin dimer. The interaction of triethyl lead chloride with the tubulin/microtubule system in vivo likely causes aneuploidy and is at least partly responsible for the cytotoxicity of the drug.  相似文献   

7.
Polarization of T cells involves reorientation of the microtubule organizing center (MTOC). Because activated ERK is localized at the immunological synapse, we investigated its role by showing that ERK activation is important for MTOC polarization. Suspecting that ERK phosphorylates a regulator of microtubules, we next focused on stathmin, a known ERK substrate. Our work indicates that during T cell activation, ERK is recruited to the synapse, allowing it to phosphorylate stathmin molecules near the immunological synapse. Supporting an important role of stathmin phosphorylation in T cell activation, we showed that T cell activation results in increased microtubule growth rate dependent on the presence of stathmin. The significance of this finding was demonstrated by results showing that CTLs from stathmin(-/-) mice displayed defective MTOC polarization and defective target cell cytolysis. These data implicate stathmin as a regulator of the microtubule network during T cell activation.  相似文献   

8.
Axon formation is the initial step in establishing neuronal polarity. We examine here the role of microtubule dynamics in neuronal polarization using hippocampal neurons in culture. We see increased microtubule stability along the shaft in a single neurite before axon formation and in the axon of morphologically polarized cells. Loss of polarity or formation of multiple axons after manipulation of neuronal polarity regulators, synapses of amphids defective (SAD) kinases, and glycogen synthase kinase-3beta correlates with characteristic changes in microtubule turnover. Consistently, changing the microtubule dynamics is sufficient to alter neuronal polarization. Application of low doses of the microtubule-destabilizing drug nocodazole selectively reduces the formation of future dendrites. Conversely, low doses of the microtubule-stabilizing drug taxol shift polymerizing microtubules from neurite shafts to process tips and lead to the formation of multiple axons. Finally, local stabilization of microtubules using a photoactivatable analogue of taxol induces axon formation from the activated area. Thus, local microtubule stabilization in one neurite is a physiological signal specifying neuronal polarization.  相似文献   

9.
Mei Y  Gao HB  Yuan M  Xue HW 《The Plant cell》2012,24(3):1066-1080
Armadillo repeat-containing proteins (ARCPs) are conserved across eukaryotic kingdoms and function in various processes. Regulation of microtubule stability by ARCPs exists widely in mammals and algae, but little is known in plants. Here, we present the functional characterization of an Arabidopsis thaliana ARCP, which was previously identified as Cellulose synthase-interactive protein1 (CSI1), and prove its crucial role in anther and root development. CSI1 is highly expressed in floral tissues, and knockout mutants of CSI1 (three allelic lines) accordingly exhibit defective anther dehiscence, which can be partially rescued by mammalian microtubule-stabilizer MAP4, suggesting that CSI1 functions by stabilizing the microtubular cytoskeleton. CSI1 binds microtubules in vitro, and immunofluorescence and coimmunoprecipitation studies confirmed the physical interactions between CSI1 and microtubules in vivo. Analysis using oryzalin, a microtubule-disrupting drug, further revealed the destabilized microtubules under CSI1 deficiency and confirmed the crucial role of CSI1 in microtubule stability. The dynamic change of CSI1 in response to dehydration strongly suggests the important function of CSI1 in dehydration-induced microtubule depolymerization and reorganization, which is crucial for anther development. These results indicate the pivotal role of CSI1 in anther development by regulating microtubule stability and hence cell morphogenesis.  相似文献   

10.
We report herein that defective natural killer (NK) cell cytotoxicity, NK cytotoxic factor (NKCF) production and NK target binding ability of patients with chronic myelogenous leukemia (CML) are functionally restorable after short-term culture (less than 1 week) with recombinant interleukin-2 (rIL-2). We have previously reported that, despite normal to increased numbers of CD16+ large granular lymphocytes, fluorescence-activated-cell-sorted NK cells from CML patients are profoundly defective in NK cell activity and are unable to lyse the CML blast-crisis-derived, NK-sensitive target K562. Since we and others have also previously shown that the defective NK cytotoxicity from CML patients is restorable after 1-4 weeks of incubation with rIL-2, we therefore deemed it important to study the kinetics of IL-2-mediated NK restoration at earlier time intervals (less than 1 week). In the present report, we have demonstrated a significant restoration of NK cell cytotoxicity in CML patients against K562 after 5 days of short-term culture with rIL-2. In addition, recovery of NKCF production and restoration of target-binding capacity to normal levels by NK cells from CML patients were also observed after short-term (less than 1 week) rIL-2 treatment. Finally, we have demonstrated in the present report that adherent cells and peripheral-blood lymphoid cells from CML patients, as compared to normal controls, are unable to produce IL-1 beta and interferon-gamma, respectively, after stimulation with phorbol myristate acetate (IL-1 beta) and phytohemagglutinin-M (interferon-gamma).  相似文献   

11.
We have previously demonstrated that Fes/Fps (Fes) tyrosine kinase is involved in Semaphorin3A-mediated signaling. Here we report a role for Fes tyrosine kinase in microtubule dynamics. A fibrous formation of Fes was observed in a kinase-dependent manner, which associated with microtubules and functionally correlated with microtubule bundling. Microtubule regeneration assays revealed that Fes aggregates colocalized with gamma-tubulin at microtubule nucleation sites in a Fes/CIP4 homology (FCH) domain-dependent manner and that expression of FCH domain-deleted Fes mutants blocked normal centrosome formation. In support of these observations, mouse embryonic fibroblasts derived from Fes-deficient mice displayed an aberrant structure of nucleation and centrosome with unbundling and disoriented filaments of microtubules. Our findings suggest that Fes plays a critical role in microtubule dynamics including microtubule nucleation and bundling through its FCH domain.  相似文献   

12.
During mitosis in Saccharomyces cerevisiae, the mitotic spindle moves into the mother-bud neck via dynein-dependent sliding of cytoplasmic microtubules along the cortex of the bud. Here we show that Pac1, the yeast homologue of the human lissencephaly protein LIS1, plays a key role in this process. First, genetic interactions placed Pac1 in the dynein/dynactin pathway. Second, cells lacking Pac1 failed to display microtubule sliding in the bud, resulting in defective mitotic spindle movement and nuclear segregation. Third, Pac1 localized to the plus ends (distal tips) of cytoplasmic microtubules in the bud. This localization did not depend on the dynein heavy chain Dyn1. Moreover, the Pac1 fluorescence intensity at the microtubule end was enhanced in cells lacking dynactin or the cortical attachment molecule Num1. Fourth, dynein heavy chain Dyn1 also localized to the tips of cytoplasmic microtubules in wild-type cells. Dynein localization required Pac1 and, like Pac1, was enhanced in cells lacking the dynactin component Arp1 or the cortical attachment molecule Num1. Our results suggest that Pac1 targets dynein to microtubule tips, which is necessary for sliding of microtubules along the bud cortex. Dynein must remain inactive until microtubule ends interact with the bud cortex, at which time dynein and Pac1 appear to be offloaded from the microtubule to the cortex.  相似文献   

13.
Bone marrow (BM) microenvironment plays an important role in normal and malignant hematopoiesis. As a consequence of interaction with the leukemic cells, the stromal cells of the bone marrow become deregulated in their normal function and gene expression. In our study, we found that mesenchymal stem cells (MSC) from BM of chronic myeloid leukemia (CML) patients have defective osteogenic differentiation and on interaction with K562 CML cells, the normal MSC showed reduced osteogenic differentiation. On interaction with K562 cells or its secreted factors, MSC acquired phenotypic abnormalities and secreted high levels of IL6 through NFκB activation. The MSC derived secreted factors provided a survival advantage to CML cells from imatinib induced apoptosis. Thus, a therapy targeting stromal cells in addition to leukemia cells might be more effective in eliminating CML cells.  相似文献   

14.
Microsporogenesis in Zea mays, the meiotic reduction of diploid sporocytes to haploid microspores, proceeds through a well-defined developmental sequence. The ability to generate mutants that affect the process makes this an ideal system for elucidating the role of the cytoskeleton during plant development. We have used immunofluorescence microscopy to compare microtubule distribution in wild-type and mutant microsporocytes. During normal meiosis the distribution of microtubules follows a specific temporal and spatial pattern that reflects the polar nature of microspore formation. Perinuclear microtubule staining increases and the nucleus elongates in the future spindle axis during late prophase I. Metaphase I spindles with highly focused poles align along the long axis of the anther locule. Cytokinesis occurs perpendicular to the spindle axis. The second division axis shifts 90 degrees with respect to the first division plane, thereby yielding an isobilateral tetrad of microspores. Microtubule distribution patterns during meiosis suggest that a nuclear envelope-associated microtubule organizing center (MTOC) controls the organization of cytoplasmic microtubules and contributes to spindle formation. The meiotic mutant dv is defective in the transition from a prophase microtubule array to a metaphase spindle. Instead of converging to form focused poles, the metaphase spindle poles remain diffuse as in prometaphase. This defect correlates with several abnormalities in subsequent developmental events including the formation of multinucleate daughter cells, multiple microspindles during meiosis II, multiple phragmoplasts, polyads of microspores, and cytoplasmic microtubule foci. These results suggest that dv is a mutation that affects MTOC organization.  相似文献   

15.
The role of GTP hydrolysis in microtubule dynamics has been reinvestigated using an analogue of GTP, guanylyl-(alpha, beta)-methylene-diphosphonate (GMPCPP). This analogue binds to the tubulin exchangeable nucleotide binding site (E-site) with an affinity four to eightfold lower than GTP and promotes the polymerization of normal microtubules. The polymerization rate of microtubules with GMPCPP-tubulin is very similar to that of GTP-tubulin. However, in contrast to microtubules polymerized with GTP, GMPCPP-microtubules do not depolymerize rapidly after isothermal dilution. The depolymerization rate of GMPCPP-microtubules is 0.1 s-1 compared with 500 s-1 for GDP-microtubules. GMPCPP also completely suppresses dynamic instability. Contrary to previous work, we find that the beta--gamma bond of GMPCPP is hydrolyzed extremely slowly after incorporation into the microtubule lattice, with a rate constant of 4 x 10(-7) s-1. Because GMPCPP hydrolysis is negligible over the course of a polymerization experiment, it can be used to test the role of hydrolysis in microtubule dynamics. Our results provide strong new evidence for the idea that GTP hydrolysis by tubulin is not required for normal polymerization but is essential for depolymerization and thus for dynamic instability. Because GMPCPP strongly promotes spontaneous nucleation of microtubules, we propose that GTP hydrolysis by tubulin also plays the important biological role of inhibiting spontaneous microtubule nucleation.  相似文献   

16.
Ward BM 《Journal of virology》2005,79(8):4755-4763
Previous work indicated that vaccinia intracellular mature virus (IMV) utilizes microtubules to move from the viral factory to the site of intracellular envelopment and that expression of the viral A27 protein is required for this transport. To investigate further the role of A27 in IMV intracellular transport, a recombinant vaccinia virus was constructed that had the A27L gene deleted and expressed a yellow fluorescent protein (YFP)-A4 chimera in place of the normal A4 protein. The resulting recombinant, vYFP-A4/DeltaA27, produced relatively normal quantities of virus in a one-step growth curve but had a small plaque phenotype. Subsequent experiments demonstrated that vYFP-A4/DeltaA27 was severely defective in envelope virus production. Despite the absence of A27, live digital video fluorescent microscopy visualized YFP-labeled IMV movement in cells infected with the recombinant. Virion movement approached 3 mum/s and was sensitive to the microtubule depolymerizing drug nocodazole. In addition, IMV could be discerned transiting away from and back towards viral factories. Immunofluorescent staining determined that the distance traveled by A27-deficient virions was sufficient for transport to the site of envelopment. These results indicate that IMVs are capable of bidirectional movement on microtubules, suggesting that they are able to interact with both kinesin and dynein microtubule motors in the absence of A27 and that the distance traveled is sufficient to deliver IMV to the site of wrapping.  相似文献   

17.
In diffusely growing plant cells, cortical microtubules play an important role in regulating the direction of cell expansion. Arabidopsis (Arabidopsis thaliana) spiral2 (spr2) mutant is defective in directional cell elongation and exhibits right-handed helical growth in longitudinally expanding organs such as root, hypocotyl, stem, petiole, and petal. The growth of spr2 roots is more sensitive to microtubule-interacting drugs than is wild-type root growth. The SPR2 gene encodes a plant-specific 94-kD protein containing HEAT-repeat motifs that are implicated in protein-protein interaction. When expressed constitutively, SPR2-green fluorescent protein fusion protein complemented the spr2 mutant phenotype and was localized to cortical microtubules as well as other mitotic microtubule arrays in transgenic plants. Recombinant SPR2 protein directly bound to taxol-stabilized microtubules in vitro. Furthermore, SPR2-specific antibody and mass spectrometry identified a tobacco (Nicotiana tabacum) SPR2 homolog in highly purified microtubule-associated protein fractions from tobacco BY-2 cell cultures. These results suggest that SPR2 is a novel microtubule-associated protein and is required for proper microtubule function involved in anisotropic growth.  相似文献   

18.
To study the role of the centrosome in microtubule organization in interphase cells, we developed a method for obtaining cytoplasts (cells lacking a nucleus) that did or did not contain centrosomes. After drug- induced microtubule depolymerization, cytoplasts with centrosomes made from sparsely plated cells reconstituted a microtubule array typical of normal cells. Under these conditions cytoplasts without centrosomes formed only a few scattered microtubules. This difference in degree of polymerization suggests that centrosomes affect not only the distribution but the amount of microtubules in cells. To our surprise, the extent of microtubules assembled increased with the cell density of the original culture. At confluent density, cytoplasts without centrosomes had many microtubules, equivalent to cytoplasts with centrosomes. The additional microtubules were arranged peripherally and differed from the centrosomal microtubules in their sensitivity to nocodazole. These and other results suggest that the centrosome stabilizes microtubules in the cell, perhaps by capping one end. Microtubules with greater sensitivity to nocodazole arise by virtue of change in the growth state of the cell and may represent free or uncapped polymers. These experiments suggest that the spatial arrangement of microtubules may change by shifting the total tubulin concentration or the critical concentration for assembly.  相似文献   

19.
Abstract Whereas addition of 200 ng ml−1 exotoxin A (exoA) did not modify PMNL chemotaxis, 20 U ml−1 human recombinant interleukin-1β (hrIL-1β) primed polymorphonuclear leukocytes (PMNL) for migration towards Pseudomonas aeruginosa peptide chemotactins (PAPCs). Piroxicam (100 μg ml−1), a non-steroidal anti-inflammatory agent (NSAIA), inhibited PMNL chemotaxis and abolished the priming effect of hrIL-1β. Both PAPCs and exoA induced PMNL superoxide anion production, but neither hrIL-1β nor piroxicam modified significantly PMNL superoxide anion production induced by PAPCs. The fact that hrIL-1β can prime PMNL for chemotaxis towards PAPCs and that piroxicam can abolish activation by primed PMNL are findings relevant to the pharmacological control of lung tissue damage during P. aeruginosa pneumonia.  相似文献   

20.
Directional cell migration is a fundamental process in all organisms that is stringently regulated during tissue development, chemotaxis and wound healing. Migrating cells have a polarized morphology with an asymmetrical distribution of signaling molecules and the cytoskeleton. Microtubules are indispensable for the directional migration of certain cells. Recent studies have shown that Rho family GTPases, which are key regulators of cell migration, affect microtubules, in addition to the actin cytoskeleton and adhesion. Rho family GTPases capture and stabilize microtubules through their effectors at the cell cortex, leading to a polarized microtubule array; in turn, microtubules modulate the activities of Rho family GTPases. In this article, we discuss how a polarized microtubule array is established and how microtubules facilitate cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号