首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the budding yeast Saccharomyces cerevisiae, the RAD52 gene is essential for all homologous recombination events and its homologue, the RAD59 gene, is important for those that occur independently of RAD51. Both Rad52 and Rad59 proteins can anneal complementary single-stranded (ss) DNA. We quantitatively examined the ssDNA annealing activity of Rad52 and Rad59 proteins and found significant differences in their biochemical properties. First, and most importantly, they differ in their ability to anneal ssDNA that is complexed with replication protein A (RPA). Rad52 can anneal an RPA-ssDNA complex, but Rad59 cannot. Second, Rad59-promoted DNA annealing follows first-order reaction kinetics, whereas Rad52-promoted annealing follows second-order reaction kinetics. Last, Rad59 enhances Rad52-mediated DNA annealing at increased NaCl concentrations, both in the absence and presence of RPA. These results suggest that Rad59 performs different functions in the recombination process, and should be more accurately viewed as a Rad52 paralogue.  相似文献   

2.
The Red system of bacteriophage λ is responsible for the genetic rearrangements that contribute to its rapid evolution and has been successfully harnessed as a research tool for genome manipulation. The key recombination component is Redβ, a ring-shaped protein that facilitates annealing of complementary DNA strands. Redβ shares functional similarities with the human Rad52 single-stranded DNA (ssDNA) annealing protein although their evolutionary relatedness is not well established. Alignment of Rad52 and Redβ sequences shows an overall low level of homology, with 15% identity in the N-terminal core domains as well as important similarities with the Rad52 homolog Sak from phage ul36. Key conserved residues were chosen for mutagenesis and their impact on oligomer formation, ssDNA binding and annealing was probed. Two conserved regions were identified as sites important for binding ssDNA; a surface basic cluster and an intersubunit hydrophobic patch, consistent with findings for Rad52. Surprisingly, mutation of Redβ residues in the basic cluster that in Rad52 are involved in ssDNA binding disrupted both oligomer formation and ssDNA binding. Mutations in the equivalent of the intersubunit hydrophobic patch in Rad52 did not affect Redβ oligomerization but did impair DNA binding and annealing. We also identified a single amino acid substitution which had little effect on oligomerization and DNA binding but which inhibited DNA annealing, indicating that these two functions of Redβ can be separated. Taken together, the results provide fresh insights into the structural basis for Redβ function and the important role of quaternary structure.  相似文献   

3.
In the yeast Saccharomyces cerevisiae, the RAD52 gene is indispensable for homologous recombination and DNA repair. Rad52 protein binds DNA, anneals complementary ssDNA strands, and self-associates to form multimeric complexes. Moreover, Rad52 physically interacts with the Rad51 recombinase and serves as a mediator in the Rad51-catalyzed DNA strand exchange reaction. Here, we examine the functional significance of the Rad51/Rad52 interaction. Through a series of deletions, we have identified residues 409-420 of Rad52 as being indispensable and likely sufficient for its interaction with Rad51. We have constructed a four-amino acid deletion mutation within this region of Rad52 to ablate its interaction with Rad51. We show that the rad52delta409-412 mutant protein is defective in the mediator function in vitro even though none of the other Rad52 activities, namely, DNA binding, ssDNA annealing, and protein oligomerization, are affected. We also show that the sensitivity of the rad52delta409-412 mutant to ionizing radiation can be complemented by overexpression of Rad51. These results thus demonstrate the significance of the Rad51-Rad52 interaction in homologous recombination.  相似文献   

4.
Rad51 protein controls Rad52-mediated DNA annealing   总被引:1,自引:0,他引:1  
In Saccharomyces cerevisiae, Rad52 protein plays an essential role in the repair of DNA double-stranded breaks (DSBs). Rad52 and its orthologs possess the unique capacity to anneal single-stranded DNA (ssDNA) complexed with its cognate ssDNA-binding protein, RPA. This annealing activity is used in multiple mechanisms of DSB repair: single-stranded annealing, synthesis-dependent strand annealing, and cross-over formation. Here we report that the S. cerevisiae DNA strand exchange protein, Rad51, prevents Rad52-mediated annealing of complementary ssDNA. Efficient inhibition is ATP-dependent and involves a specific interaction between Rad51 and Rad52. Free Rad51 can limit DNA annealing by Rad52, but the Rad51 nucleoprotein filament is even more effective. We also discovered that the budding yeast Rad52 paralog, Rad59 protein, partially restores Rad52-dependent DNA annealing in the presence of Rad51, suggesting that Rad52 and Rad59 function coordinately to enhance recombinational DNA repair either by directing the processed DSBs to repair by DNA strand annealing or by promoting second end capture to form a double Holliday junction. This regulation of Rad52-mediated annealing suggests a control function for Rad51 in deciding the recombination path taken for a processed DNA break; the ssDNA can be directed to either Rad51-mediated DNA strand invasion or to Rad52-mediated DNA annealing. This channeling determines the nature of the subsequent repair process and is consistent with the observed competition between these pathways in vivo.  相似文献   

5.
Rad51, Rad52, and replication protein-A (RPA) play crucial roles in the repair of DNA double-strand breaks in Saccharomyces cerevisiae. Rad51 mediates DNA strand exchange, a key reaction in DNA recombination. Rad52 recruits Rad51 into single-stranded DNAs (ssDNAs) that are saturated with RPA. Rad52 also promotes annealing of ssDNA strands that are complexed with RPA. Specific protein-protein interactions are involved in these reactions. Here we report new biochemical characteristics of these protein interactions. First, Rad52-RPA interaction requires multiple molecules of RPA to be associated with ssDNA, suggesting that multiple contacts between the Rad52 ring and RPA-ssDNA filament are needed for stable binding. Second, RPA-t11, which is a recombination-deficient mutant of RPA, displays a defect in interacting with Rad52 in the presence of salt above 50 mM, explaining the defect in Rad52-mediated ssDNA annealing in the presence of this mutation. Third, ssDNA annealing promoted by Rad52 is preceded by aggregation of multiple RPA-ssDNA complexes with Rad52, and Rad51 inhibits this aggregation. These results suggest a regulatory role for Rad51 that suppresses ssDNA annealing and facilitates DNA strand invasion. Finally, the Rad51-double-stranded DNA complex disrupts Rad52-RPA interaction in ssDNA and titrates Rad52 from RPA. This suggests an additional regulatory role for Rad51 following DNA strand invasion, where Rad51-double-stranded DNA may inhibit illegitimate second-end capture to ensure the error-free repair of a DNA double-strand break.  相似文献   

6.
Rad51, Rad52, and RPA play central roles in homologous DNA recombination. Rad51 mediates DNA strand exchange, a key reaction in DNA recombination. Rad52 has two distinct activities: to recruit Rad51 onto single-strand (ss)DNA that is complexed with the ssDNA-binding protein, RPA, and to anneal complementary ssDNA complexed with RPA. Here, we report that Rad52 promotes annealing of the ssDNA strand that is displaced by DNA strand exchange by Rad51 and RPA, to a second ssDNA strand. An RPA that is recombination-deficient (RPA(rfa1-t11)) failed to support annealing, explaining its in vivo phenotype. Escherichia coli RecO and SSB proteins, which are functional homologues of Rad52 and RPA, also facilitated the same reaction, demonstrating its conserved nature. We also demonstrate that the two activities of Rad52, recruiting Rad51 and annealing DNA, are coordinated in DNA strand exchange and second ssDNA capture.  相似文献   

7.
Rad52 promotes the annealing of complementary strands of DNA bound by replication protein A (RPA) during discrete repair pathways. Here, we used a fluorescence resonance energy transfer (FRET) between two fluorescent dyes incorporated into DNA substrates to probe the mechanism by which human Rad52 (hRad52) interacts with and mediates annealing of ssDNA–hRPA complexes. Human Rad52 bound ssDNA or ssDNA–hRPA complex in two, concentration-dependent modes. At low hRad52 concentrations, ssDNA was wrapped around the circumference of the protein ring, while at higher protein concentrations, ssDNA was stretched between multiple hRad52 rings. Annealing by hRad52 occurred most efficiently when each complementary DNA strand or each ssDNA–hRPA complex was bound by hRad52 in a wrapped configuration, suggesting homology search and annealing occur via two hRad52–ssDNA complexes. In contrast to the wild type protein, hRad52RQK/AAA and hRad521–212 mutants with impaired ability to bind hRPA protein competed with hRPA for binding to ssDNA and failed to counteract hRPA-mediated duplex destabilization highlighting the importance of hRad52-hRPA interactions in promoting efficient DNA annealing.  相似文献   

8.
Davis AP  Symington LS 《Genetics》2001,159(2):515-525
The yeast RAD52 gene is essential for homology-dependent repair of DNA double-strand breaks. In vitro, Rad52 binds to single- and double-stranded DNA and promotes annealing of complementary single-stranded DNA. Genetic studies indicate that the Rad52 and Rad59 proteins act in the same recombination pathway either as a complex or through overlapping functions. Here we demonstrate physical interaction between Rad52 and Rad59 using the yeast two-hybrid system and co-immunoprecipitation from yeast extracts. Purified Rad59 efficiently anneals complementary oligonucleotides and is able to overcome the inhibition to annealing imposed by replication protein A (RPA). Although Rad59 has strand-annealing activity by itself in vitro, this activity is insufficient to promote strand annealing in vivo in the absence of Rad52. The rfa1-D288Y allele partially suppresses the in vivo strand-annealing defect of rad52 mutants, but this is independent of RAD59. These results suggest that in vivo Rad59 is unable to compete with RPA for single-stranded DNA and therefore is unable to promote single-strand annealing. Instead, Rad59 appears to augment the activity of Rad52 in strand annealing.  相似文献   

9.
Homologous recombination is an important pathway for the repair of DNA double-strand breaks (DSBs). In the yeast Saccharomyces cerevisiae, Rad52 is a central recombination protein, whereas its paralogue, Rad59, plays a more subtle role in homologous recombination. Both proteins can mediate annealing of complementary single-stranded DNA in vitro, but only Rad52 interacts with replication protein A and the Rad51 recombinase. We have studied the functional overlap between Rad52 and Rad59 in living cells using chimeras of the two proteins and site-directed mutagenesis. We find that Rad52 and Rad59 have both overlapping as well as separate functions in DSB repair. Importantly, the N-terminus of Rad52 possesses functions not supplied by Rad59, which may account for its central role in homologous recombination.  相似文献   

10.
Saccharomyces cerevisiae Rad52 protein promotes homologous recombination by nucleating the Rad51 recombinase onto replication protein A-coated single-stranded DNA strands and also by directly annealing such strands. We show that the purified rad52-R70A mutant protein, with a compromised amino-terminal DNA binding domain, is capable of Rad51 delivery to DNA but is deficient in DNA annealing. Results from chromatin immunoprecipitation experiments find that rad52-R70A associates with DNA double-strand breaks and promotes recruitment of Rad51 as efficiently as wild-type Rad52. Analysis of gene conversion intermediates reveals that rad52-R70A cells can mediate DNA strand invasion but are unable to complete the recombination event. These results provide evidence that DNA binding by the evolutionarily conserved amino terminus of Rad52 is needed for the capture of the second DNA end during homologous recombination.  相似文献   

11.
Navadgi VM  Dutta A  Rao BJ 《Biochemistry》2003,42(51):15237-15251
Human Rad52 protein, by analogy with the genetics of yeast Rad52, is believed to mediate a pathway of homologous recombination even independent of Rad51. Current study is focused on unraveling the molecular properties of hRad52 that endow the protein such an ability. We show here that the hRad52 protein binds single-stranded DNA (ssDNA) as well as 3'- and 5'-tailed duplexes severalfold better than blunt-ended duplexes, altering the sensitivity of the bound DNA to the action of DNase I. Protein binding is sensitive to the length of the ssDNA: targets as short as a 33mer poorly bind the protein, whereas that of a 61mer and above bind the protein stably well. Such stable ssDNA-hRad52 complexes are highly competent in mediating not only the annealing of two complementary strands but also three-stranded pairing. The latter involves homologous recognition of linear duplex DNA by the ssDNA-hRad52 complex. We show that the hRad52 protein facilitates homologous recognition between ssDNA and duplex-DNA through a process that involves unwinding or transient unpairing of the interacting duplex via a novel three-stranded intermediate that does not lead to strand exchange. The results enable us to visualize a novel role for hRad52 that may model its function in a pathway requiring no hRad51.  相似文献   

12.
During DNA double-strand-break (DSB) repair by recombination, the broken chromosome uses a homologous chromosome as a repair template. Early steps of recombination are well characterized: DSB ends assemble filaments of RecA-family proteins that catalyze homologous pairing and strand-invasion reactions. By contrast, the postinvasion steps of recombination are poorly characterized. Rad52 plays an essential role during early steps of recombination by mediating assembly of a RecA homolog, Rad51, into nucleoprotein filaments. The meiosis-specific RecA-homolog Dmc1 does not show this dependence, however. By exploiting the Rad52 independence of Dmc1, we reveal that Rad52 promotes postinvasion steps of both crossover and noncrossover pathways of meiotic recombination in Saccharomyces cerevisiae. This activity resides in the N-terminal region of Rad52, which can anneal complementary DNA strands, and is independent of its Rad51-assembly function. Our findings show that Rad52 functions in temporally and biochemically distinct reactions and suggest a general annealing mechanism for reuniting DSB ends during recombination.  相似文献   

13.
The eukaryotic single-stranded DNA-binding protein, replication protein A (RPA), is essential for DNA replication, and plays important roles in DNA repair and DNA recombination. Rad52 and RPA, along with other members of the Rad52 epistasis group of genes, repair double-stranded DNA breaks (DSBs). Two repair pathways involve RPA and Rad52, homologous recombination and single-strand annealing. Two binding sites for Rad52 have been identified on RPA. They include the previously identified C-terminal domain (CTD) of RPA32 (residues 224-271) and the newly identified domain containing residues 169-326 of RPA70. A region on Rad52, which includes residues 218-303, binds RPA70 as well as RPA32. The N-terminal region of RPA32 does not appear to play a role in the formation of the RPA:Rad52 complex. It appears that the RPA32CTD can substitute for RPA70 in binding Rad52. Sequence homology between RPA32 and RPA70 was used to identify a putative Rad52-binding site on RPA70 that is located near DNA-binding domains A and B. Rad52 binding to RPA increases ssDNA affinity significantly. Mutations in DBD-D on RPA32 show that this domain is primarily responsible for the ssDNA binding enhancement. RPA binding to Rad52 inhibits the higher-order self-association of Rad52 rings. Implications for these results for the "hand-off" mechanism between protein-protein partners, including Rad51, in homologous recombination and single-strand annealing are discussed.  相似文献   

14.
The Saccharomyces cerevisiae Rad52 protein is essential for efficient homologous recombination (HR). An important role of Rad52 in HR is the loading of Rad51 onto replication protein A-coated single-stranded DNA (ssDNA), which is referred to as the recombination mediator activity. In vitro, Rad52 displays additional activities, including self-association, DNA binding and ssDNA annealing. Although Rad52 has been a subject of extensive genetic, biochemical and structural studies, the mechanisms by which these activities are coordinated in the various roles of Rad52 in HR remain largely unknown. In the present study, we found that an isolated C-terminal half of Rad52 disrupted the Rad51 oligomer and formed a heterodimeric complex with Rad51. The Rad52 fragment inhibited the binding of Rad51 to double-stranded DNA, but not to ssDNA. The phenylalanine-349 and tyrosine-409 residues present in the C-terminal half of Rad52 were critical for the interaction with Rad51, the disruption of Rad51 oligomers, the mediator activity of the full-length protein and for DNA repair in vivo in the presence of methyl methanesulfonate. Our studies suggested that phenylalanine-349 and tyrosine-409 are key residues in the C-terminal half of Rad52 and probably play an important role in the mediator activity.  相似文献   

15.
Single-strand annealing proteins, such as Redβ from λ phage or eukaryotic Rad52, play roles in homologous recombination. Here, we use atomic force microscopy to examine Redβ quaternary structure and Redβ-DNA complexes. In the absence of DNA, Redβ forms a shallow right-handed helix. The presence of single-stranded DNA (ssDNA) disrupts this structure. Upon addition of a second complementary ssDNA, annealing generates a left-handed helix that incorporates 14 Redβ monomers per helical turn, with each Redβ monomer annealing ≈ 11 bp of DNA. The smallest stable annealing intermediate requires 20 bp DNA and two Redβ monomers. Hence, we propose that Redβ promotes base pairing by first increasing the number of transient interactions between ssDNAs. Then, annealing is promoted by the binding of a second Redβ monomer, which nucleates the formation of a stable annealing intermediate. Using threading, we identify sequence similarities between the RecT/Redβ and the Rad52 families, which strengthens previous suggestions, based on similarities of their quaternary structures, that they share a common mode of action. Hence, our findings have implications for a common mechanism of DNA annealing mediated by single-strand annealing proteins including Rad52.  相似文献   

16.
DNA double-strand breaks (DSBs) in eukaryotic cells can be repaired by non-homologous end-joining or homologous recombination. The complex containing the Mre11, Rad50 and Nbs1 proteins has been implicated in both DSB repair pathways, even though they are mechanistically different. To get a better understanding of the properties of the human Mre11 (hMre11) protein, we investigated some of its biochemical activities. We found that hMre11 binds both double- and single-stranded (ss)DNA, with a preference for ssDNA. hMre11 does not require DNA ends for efficient binding. Interestingly, hMre11 mediates the annealing of complementary ssDNA molecules. In contrast to the annealing activity of the homologous recombination protein hRad52, the activity of hMre11 is abrogated by the ssDNA binding protein hRPA. We discuss the possible implications of the results for the role(s) of hMre11 in both DSB repair pathways.  相似文献   

17.
The Saccharomyces cerevisiae Rad52 protein has a crucial role in the repair of DNA double-strand breaks by homologous recombination. In vitro, Rad52 displays DNA binding and strand annealing activities and promotes Rad51-mediated strand exchange. Schizosaccharomyces pombe has two Rad52 homologues, Rad22A and Rad22B. Whereas rad22A deficient strains exhibit severe defects in repair and recombination, rad22B mutants have a much less severe phenotype. To better understand the role of Rad22A and Rad22B in double-strand break repair, both proteins were purified to near homogeneity. Using gel retardation and filter binding assays, binding of Rad22A and Rad22B to short single-stranded DNAs was demonstrated. Binding of Rad22A to double-stranded oligonucleotides or linearized plasmid molecules containing blunt ends or short single-stranded overhangs could not be detected. Rad22B also does not bind efficiently to short duplex oligonucleotides but binds readily to DNA fragments containing 3'-overhangs. Rad22A as well as Rad22B efficiently promote annealing of complementary single-stranded DNAs. In the presence of Rad22A annealing of complementary DNAs is almost 90%. Whereas in reactions containing Rad22B the maximum level of annealing is 60%, most likely due to inhibition of the reaction by duplex DNA. Gel-filtration experiments and electron microscopic analyses indicate self-association of Rad22A and Rad22B and the formation of multimeric structures as has been observed for Rad52 in yeast and man.  相似文献   

18.
A helical filament of Rad51 on single-strand DNA (ssDNA), called the presynaptic filament, catalyzes DNA joint formation during homologous recombination. Rad52 facilitates presynaptic filament assembly, and this recombination mediator activity is thought to rely on the interactions of Rad52 with Rad51, the ssDNA-binding protein RPA, and ssDNA. The N-terminal region of Rad52, which has DNA binding activity and an oligomeric structure, is thought to be crucial for mediator activity and recombination. Unexpectedly, we find that the C-terminal region of Rad52 also harbors a DNA binding function. Importantly, the Rad52 C-terminal portion alone can promote Rad51 presynaptic filament assembly. The middle portion of Rad52 associates with DNA-bound RPA and contributes to the recombination mediator activity. Accordingly, expression of a protein species that harbors the middle and C-terminal regions of Rad52 in the rad52 Delta327 background enhances the association of Rad51 protein with a HO-made DNA double-strand break and partially complements the methylmethane sulfonate sensitivity of the mutant cells. Our results provide a mechanistic framework for rationalizing the multi-faceted role of Rad52 in recombination and DNA repair.  相似文献   

19.
We demonstrate that RecA protein can mediate annealing of complementary DNA strands in vitro by at least two different mechanisms. The first annealing mechanism predominates under conditions where RecA protein causes coaggregation of single-stranded DNA (ssDNA) molecules and where RecA-free ssDNA stretches are present on both reaction partners. Under these conditions annealing can take place between locally concentrated protein-free complementary sequences. Other DNA aggregating agents like histone H1 or ethanol stimulate annealing by the same mechanism. The second mechanism of RecA-mediated annealing of complementary DNA strands is best manifested when preformed saturated RecA-ssDNA complexes interact with protein-free ssDNA. In this case, annealing can occur between the ssDNA strand resident in the complex and the ssDNA strand that interacts with the preformed RecA-ssDNA complex. Here, the action of RecA protein reflects its specific recombination promoting mechanism. This mechanism enables DNA molecules resident in the presynaptic RecA-DNA complexes to be exposed for hydrogen bond formation with DNA molecules contacting the presynaptic RecA-DNA filament.  相似文献   

20.
Saccharomyces cells with a single unrepaired double-strand break adapt after checkpoint-mediated G(2)/M arrest. We have found that both Rad51 and Rad52 recombination proteins play key roles in adaptation. Cells lacking Rad51p fail to adapt, but deleting RAD52 suppresses rad51Delta. rad52Delta also suppresses adaptation defects of srs2Delta mutants but not those of yku70Delta or tid1Delta mutants. Neither rad54Delta nor rad55Delta affects adaptation. A Rad51 mutant that fails to interact with Rad52p is adaptation defective; conversely, a C-terminal truncation mutant of Rad52p, impaired in interaction with Rad51p, is also adaptation defective. In contrast, rad51-K191A, a mutation that abolishes recombination and results in a protein that does not bind to single-stranded DNA (ssDNA), supports adaptation, as do Rad51 mutants impaired in interaction with Rad54p or Rad55p. An rfa1-t11 mutation in the ssDNA binding complex RPA partially restores adaptation in rad51Delta mutants and fully restores adaptation in yku70Delta and tid1Delta mutants. Surprisingly, although neither rfa1-t11 nor rad52Delta mutants are adaptation defective, the rad52Delta rfa1-t11 double mutant fails to adapt and exhibits the persistent hyperphosphorylation of the DNA damage checkpoint protein Rad53 after HO induction. We suggest that monitoring of the extent of DNA damage depends on independent binding of RPA and Rad52p to ssDNA, with Rad52p's activity modulated by Rad51p whereas RPA's action depends on Tid1p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号