首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formamide is a slow-onset inhibitor of mitochondrial cytochrome c oxidase that is proposed to act by blocking water movement through the protein. In the presence of formamide the redox level of mitochondrial cytochrome c oxidase evolves over the steady state as the apparent electron transfer rate from cytochrome a to cytochrome a(3) slows. At maximal inhibition cytochrome a and cytochrome c are fully reduced, whereas cytochrome a(3) and Cu(B) remain fully oxidized consistent with the idea that formamide interferes with electron transfer between cytochrome a and the oxygen reaction site. However, transient kinetic studies show that intrinsic rates of electron transfer are unchanged in the formamide-inhibited enzyme. Formamide inhibition is demonstrated for another member of the heme-oxidase family, cytochrome c oxidase from Bacillus subtilis, but the onset of inhibition is much quicker than for mitochondrial oxidase. If formamide inhibition arises from a steric blockade of water exchange during catalysis then water exchange in the smaller bacterial oxidase is more open. Subunit III removal from the mitochondrial oxidase hastens the onset of formamide inhibition suggesting a role for subunit III in controlling water exchange during the cytochrome c oxidase reaction.  相似文献   

2.
To probe the location of the quinol oxidation site and physical interactions for inter-subunit electron transfer, we constructed and characterized two chimeric oxidases in which subunit II (CyoA) of cytochrome bo-type ubiquinol oxidase from Escherichia coli was replaced with the counterpart (CaaA) of caa(3)-type cytochrome c oxidase from thermophilic Bacillus PS3. In pHNchi5, the C-terminal hydrophilic domain except a connecting region as to transmembrane helix II of CyoA was replaced with the counterpart of CaaA, which carries the Cu(A) site and cytochrome c domain. The resultant chimeric oxidase was detected immunochemically and spectroscopically, and the turnover numbers for Q(1)H(2) (ubiquinol-1) and TMPD (N,N, N',N'-tetramethyl-p-phenylenediamine) oxidation were 28 and 8.5 s(-1), respectively. In pHNchi6, the chimeric oxidase was designed to carry a minimal region of the cupredoxin fold containing all the Cu(A) ligands, and showed enzymatic activities of 65 and 5.1 s(-1), and an expression level better than that of pHNchi5. Kinetic analyses proved that the apparent lower turnover of the chimeric enzyme by pHNchi6 was due to the higher K(m) of the enzyme for Q(1)H(2) (220 microM) than that of cytochrome bo (48 microM), while in the enzyme by pHNchi5, both substrate-binding and internal electron transfer were perturbed. These results suggest that the connecting region and the C-terminal alpha(1)-alpha(2)-beta(11)-alpha(3) domain of CyoA are involved in the quinol oxidation and/or physical interactions for inter-subunit electron transfer, supporting our previous proposal [Sato-Watanabe, M., Mogi, T., Miyoshi, H., and Anraku, Y. (1998) Biochemistry 37, 12744-12752]. The close relationship of E. coli quinol oxidases to cytochrome c oxidase of Gram-positive bacteria like Bacillus was also indicated.  相似文献   

3.
The genomes of several cyanobacteria show the existence of gene clusters encoding subunits I, II, and III of aa(3)-type cytochrome c oxidase. The enzyme occurs on both plasma and thylakoid membranes of these oxygenic phototrophic prokaryotes. Here we report the expression and purification of a truncated subunit II copper A (Cu(A)) domain (i.e. the electron entry and donor binding site) of cytochrome c oxidase from the cyanobacterium Synechocystis PCC 6803 in high yield. The water-soluble purple redox-active bimetallic center displays a relatively low standard reduction potential of 216 mV. Its absorption spectrum at pH 7 is similar to that of other soluble fragments from aa(3)-type oxidases, but the insensitivity of both absorbance and circular dichroism spectra to pH suggests that it is less exposed to the aqueous milieu compared with other Cu(A) domains. Oxidation of horse heart cytochrome c by the bimetallic center follows monophasic kinetics. At pH 7 and low ionic strength the bimolecular rate constant is (2.1 +/- 0.3) x 10(4) m-1 s(-1), and the rates decrease upon the increase of ionic strength. Sequence alignment and modeling of cyanobacterial Cu(A) domains show several peculiarities such as: (i) a large insertion located between the second transmembrane region and the putative hydrophobic cytochrome c docking site, (ii) the lack of acidic residues shown to be important in the interaction between cytochrome c and Paracoccus Cu(A) domain, and (iii) an extended C terminus similar to Escherichia coli ubiquinol oxidase.  相似文献   

4.
The aa3 oxidases from bacteria form a group of related enzymes that resemble the far more complex mitochondrial cytochrome c oxidase, both functionally and structurally. These enzymes catalyze electron transfer from ferrocytochrome c to oxygen to produce water. This transfer is coupled to proton translocation. Several oxidases of this type have been purified from cytoplasmic membranes of bacteria. This review summarizes the present knowledge on purified bacterial aa3 oxidases and correlates these findings with data available for the eukaryotic cytochrome c-oxidases.  相似文献   

5.
Drosou V  Reincke B  Schneider M  Ludwig B 《Biochemistry》2002,41(34):10629-10634
Under in vitro conditions, bacterial cytochrome c oxidases may accept several nonhomologous c-type electron donors, including the evolutionarily related mitochondrial cytochrome c. Several lines of evidence suggest that in intact membranes the heme aa(3) oxidase from Paracoccus denitrificans receives its electrons from the membrane-bound cytochrome c(552). Both the structures of the oxidase and of a heterologously expressed, soluble fragment of the c(552) have been determined recently, but no direct structural information about a static cocomplex is available. Here, we analyze the kinetic properties of the isolated oxidase with the full-size c(552), with two truncated soluble forms, and with a set of site-specific mutants within the presumed docking site of the cytochrome, all heterologously expressed in Escherichia coli. Our data indicate that all three forms, the wild type and both truncations, are fully competent kinetically and exhibit biphasic kinetic behavior, however, under widely different ionic strength conditions. When mutations in lysine residues clustered around the interaction domain were introduced into the smallest fragment of c(552), both kinetic parameters, K(M) and k(cat), were drastically influenced. On the other hand, when the nonmutated truncated form was used to donate electrons to a set of oxidase mutants with replacements clustered along the docking site on subunit II, we observe distinct differences when comparing the kinetic properties of the widely used horse heart cytochrome c with those of the bacterial c(552). We conclude that the specific docking sites for the two types of cytochromes differ to some extent.  相似文献   

6.
Cooperative linkage of solute binding at separate binding sites in allosteric proteins is an important functional attribute of soluble and membrane bound hemoproteins. Analysis of proton/electron coupling at the four redox centers, i.e. Cu(A), heme a, heme a(3) and Cu(B), in the purified bovine cytochrome c oxidase in the unliganded, CO-liganded and CN-liganded states is presented. These studies are based on direct measurement of scalar proton translocation associated with oxido-reduction of the metal centers and pH dependence of the midpoint potential of the redox centers. Heme a (and Cu(A)) exhibits a cooperative proton/electron linkage (Bohr effect). Bohr effect seems also to be associated with the oxygen-reduction chemistry at the heme a(3)-Cu(B) binuclear center. Data on electron transfer in cytochrome c oxidase are also presented, which, together with structural data, provide evidence showing the occurrence of direct electron transfer from Cu(A) to the binuclear center in addition to electron transfer via heme a. A survey of structural and functional data showing the essential role of cooperative proton/electron linkage at heme a in the proton pump of cytochrome c oxidase is presented. On the basis of this and related functional and structural information, variants for cooperative mechanisms in the proton pump of the oxidase are examined.  相似文献   

7.
8.
Cytochrome cbb(3) oxidases are found almost exclusively in Proteobacteria, and represent a distinctive class of proton-pumping respiratory heme-copper oxidases (HCO) that lack many of the key structural features that contribute to the reaction cycle of the intensely studied mitochondrial cytochrome c oxidase (CcO). Expression of cytochrome cbb(3) oxidase allows human pathogens to colonise anoxic tissues and agronomically important diazotrophs to sustain N(2) fixation. We review recent progress in the biochemical characterisation of these distinctive oxidases that lays the foundation for understanding the basis of their proposed high affinity for oxygen, an apparent degeneracy in their electron input pathways and whether or not they acquired the ability to pump protons independently of other HCOs.  相似文献   

9.
The hydrophobically guided complex formation between the Cu(A) fragment from Thermus thermophilus ba(3) terminal oxidase and its electron transfer substrate, cytochrome c(552), was investigated electrochemically. In the presence of the purified Cu(A) fragment, a clear downshift of the c(552) redox potential from 171 to 111mV±10mV vs SHE' was found. Interestingly, this potential change fully matches complex formation with this electron acceptor site in other oxidases guided by electrostatic or covalent interactions. Redox induced FTIR difference spectra revealed conformational changes associated with complex formation and indicated the involvement of heme propionates. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

10.
Interaction of cytochrome c with electron carriers in intact and damaged (with destroyed outer membrane) rat liver mitochondria was studied. It was shown that the increase in ionic strength causes changes in the respiration rate of damaged mitochondria due to the reduction of the cytochrome c affinity for its binding sites in the organelles. This suggests that cytochrome c concentration in the intermembrane space of intact mitochondria is increased by salts, whereas the increase in ionic strength has a slight influence on the rates of succinate oxidase and external rotenone-insensitive NADH-oxidase of intact mitochondria. At low ionic strength values, the Michaelis constant (KM) value of external NADH-oxidase for cytochrome c exceeds by one order of magnitude that for succinate oxidase, while the maximal activity of these two systems is nearly the same. The increase in ionic strength causes an increase in the KM value for both oxidases. Interaction of cytochrome c with mitochondrial proteins was modelled by cytochrome c interaction with cibacron-dextran anions. It was concluded that the ionic strength-sensitive electrostatic interactions play a decisive role in cytochrome c binding to electron carriers in mitochondrial membranes. However, cytochrome c content and its binding parameters in intact-mitochondrial membranes prevent the latent activity of external NADH oxidase to be revealed in intact mitochondria after the increase in the ionic strength of the surrounding medium.  相似文献   

11.
Flavocytochrome c552 from Chromatium vinosum catalyzes the oxidation of sulfide to sulfur using a soluble c-type cytochrome as an electron acceptor. Mitochondrial cytochrome c forms a stable complex with flavocytochrome c552 and may function as an alternative electron acceptor in vitro. The recognition site for flavocytochrome c552 on equine cytochrome c has been deduced by differential chemical modification of cytochrome c in the presence and absence of flavocytochrome c552 and by kinetic analysis of the sulfide:cytochrome c oxidoreductase activity of m-trifluoromethylphenylcarbamoyl-lysine derivatives of cytochrome c. As with mitochondrial redox partners, interaction occurs around the exposed heme edge at the "front face" of cytochrome c. However, the domain recognized by flavocytochrome c552 seems to extend to the right of the heme edge, whereas the site of interaction with mitochondrial cytochrome c oxidase and reductase is more to the left. Km but not Vmax of the electron transfer reaction with mitochondrial cytochrome c increases with increasing ionic strength. The correlation of chemical modification and ionic strength dependence data indicates that the electrostatic interaction between the two hemoproteins involves fewer ionic bonds than that with other redox partners of cytochrome c.  相似文献   

12.
The electron transfer complex between bovine cytochrome c oxidase and horse cytochrome c has been predicted with the docking program DOT, which performs a complete, systematic search over all six rotational and translational degrees of freedom. Energies for over 36 billion configurations were calculated, providing a free-energy landscape showing guidance of positively charged cytochrome c to the negative region on the cytochrome c oxidase surface formed by subunit II. In a representative configuration, the solvent-exposed cytochrome c heme edge is within 4 A of the indole ring of subunit II residue Trp(104), indicating a likely electron transfer path. These two groups are surrounded by a small, hydrophobic contact region, which is surrounded by electrostatically complementary hydrophilic interactions. Cytochrome c/cytochrome c oxidase interactions of Lys(13) with Asp(119) and Lys(72) with Gln(103) and Asp(158) are the most critical polar interactions due to their proximity to the hydrophobic region and exclusion from bulk solvent. The predicted complex matches previous mutagenesis, binding, and time-resolved kinetics studies that implicate Trp(104) in electron transfer and show the importance of specific charged residues to protein affinity. Electrostatic forces not only enhance long range protein/protein association; they also predominate in short range alignment, creating the transient interaction needed for rapid turnover.  相似文献   

13.
Electrostatically stabilized complexes of fully oxidized cytochrome c oxidase from Paracoccus denitrificans and horse heart cytochrome c were studied by resonance Raman spectroscopy. The experiments were carried out with the wild-type oxidase and a variant in which a negatively charged amino acid in the binding domain (D257) is replaced by an asparagine. It is shown that cytochrome c induces structural changes at heme a and heme a(3) which are reminiscent to those found in mammalian cytochrome c oxidase-cytochrome c complex. The spectral changes are attributed to subtle changes in the heme-protein interactions implying that there is a structural communication from the binding domain even to the remote catalytic center. Only for the heme a modes minor spectral differences were found in the response of the wild-type and the D257N variant oxidase upon cytochrome c binding indicating that electrostatic interactions of aspartate 257 are not crucial for the perturbation of the catalytic site structure in the complex. On the other hand, in none of the complexes, structural changes were detected in the bound cytochrome c. These findings are in contrast to previous results obtained with beef heart cytochrome c oxidase which triggers the formation of a new conformational state of cytochrome c assumed to be involved in the biological electron transfer process.  相似文献   

14.
Several components of the respiratory chain of the eubacterium Thermus thermophilus have previously been characterized to various extent, while no conclusive evidence for a cytochrome bc(1) complex has been obtained. Here, we show that four consecutive genes encoding cytochrome bc(1) subunits are organized in an operon-like structure termed fbcCXFB. The four gene products are identified as genuine subunits of a cytochrome bc(1) complex isolated from membranes of T. thermophilus. While both the cytochrome b and the FeS subunit show typical features of canonical subunits of this respiratory complex, a further membrane-integral component (FbcX) of so far unknown function copurifies as a subunit of this complex. The cytochrome c(1) carries an extensive N-terminal hydrophilic domain, followed by a hydrophobic, presumably membrane-embedded helical region and a typical heme c binding domain. This latter sequence has been expressed in Escherichia coli, and in vitro shown to be a kinetically competent electron donor to cytochrome c(552), mediating electron transfer to the ba(3) oxidase. Identification of this cytochrome bc(1) complex bridges the gap between the previously reported NADH oxidation activities and terminal oxidases, thus, defining all components of a minimal, mitochondrial-type electron transfer chain in this evolutionary ancient thermophile.  相似文献   

15.
Cytochrome c oxidase mediates the final step of electron transfer reactions in the respiratory chain, catalyzing the transfer between cytochrome c and the molecular oxygen and concomitantly pumping protons across the inner mitochondrial membrane. We investigate the electron transfer reactions in cytochrome c oxidase, particularly the control of the effective electronic coupling by the nuclear thermal motion. The effective coupling is calculated using the Green's function technique with an extended Huckel level electronic Hamiltonian, combined with all-atom molecular dynamics of the protein in a native (membrane and solvent) environment. The effective coupling between Cu(A) and heme a is found to be dominated by the pathway that starts from His(B204). The coupling between heme a and heme a(3) is dominated by a through-space jump between the two heme rings rather than by covalent pathways. In the both steps, the effective electronic coupling is robust to the thermal nuclear vibrations, thereby providing fast and efficient electron transfer.  相似文献   

16.
The orientation of purified beef heart cytochrome c oxidase, incorporated into vesicles by the cholate dialysis procedure [Carroll, R.C., & Racker, E. (1977) J. Biol. Chem. 252, 6981], has been investigated by functional and structural approaches. The level of heme reduction obtained by using cytochrome c along with the membrane-impermeant electron donor ascorbate was 78 +/- 2% of that obtained with cytochrome c and the membrane-permeant reagent N,N,N',N'-tetramethyl-p-phenylenediamine. Electron transfer from cytochrome c is known to occur exclusively from the outer surface of the mitochondrial inner membrane (C side), implying that at least 78% of the oxidase molecules are oriented in the same way in these vesicles as in the intact mitochondria. Trypsin, which cleaves subunit IV near its N terminus, modifies only 5-7% of this subunit in intact vesicles. This removal of the N-terminal residues has been shown to occur only in mitochondrial membranes with their inner side (M side) exposed. Diazobenzene [35S]sulfonate [( 35S]DABS) likewise modifies subunit IV only in submitochondrial particles. Labeling of intact membranes with [35S]DABS resulted in incorporation of only 4-8% of the total counts that could be incorporated into this subunit in membranes made leaky to the reagent by addition of 2% Triton X-100. Therefore, both the functional and structural data show that at least 80% and probably more of the cytochrome c oxidase molecules are oriented with their C domain outermost and M domains in the lumen of vesicles prepared by the cholate dialysis method.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Cytochrome c oxidase is a respiratory enzyme catalysing the energy-conserving reduction of molecular oxygen to water. The crystal structure of the ba(3)-cytochrome c oxidase from Thermus thermophilus has been determined to 2.4 A resolution using multiple anomalous dispersion (MAD) phasing and led to the discovery of a novel subunit IIa. A structure-based sequence alignment of this phylogenetically very distant oxidase with the other structurally known cytochrome oxidases leads to the identification of sequence motifs and residues that seem to be indispensable for the function of the haem copper oxidases, e.g. a new electron transfer pathway leading directly from Cu(A) to Cu(B). Specific features of the ba(3)-oxidase include an extended oxygen input channel, which leads directly to the active site, the presence of only one oxygen atom (O(2-), OH(-) or H(2)O) as bridging ligand at the active site and the mainly hydrophobic character of the interactions that stabilize the electron transfer complex between this oxidase and its substrate cytochrome c. New aspects of the proton pumping mechanism could be identified.  相似文献   

18.
Eukaryotic cytochrome c oxidase (CcO), the terminal component of the mitochondrial electron transport chain is a heterooligomeric complex that belongs to the superfamily of heme-copper containing terminal oxidases. The enzyme, composed of both mitochondrially and nuclear encoded subunits, is embedded in the inner mitochondrial membrane, where it catalyzes the transfer of electrons form reduced cytochrome c to dioxygen, coupling this reaction with vectorial proton pumping across the inner membrane. Due to the complexity of the enzyme, the biogenesis of CcO involves a multiplicity of steps, carried out by a number of highly specific gene products. These include mainly proteins that mediate the delivery and insertion of copper ions, synthesis and incorporation of heme moieties and membrane-insertion and topogenesis of constituent protein subunits. Isolated CcO deficiency represents one of the most frequently recognized causes of respiratory chain defects in humans, associated with severe, often fatal clinical phenotype. Here we review recent advancements in the understanding of this intricate process, with a focus on mammalian enzyme.  相似文献   

19.
Because of recent experimental data on the redox characteristics of cytochrome c oxidase and renewed interest in the role of cooperativity in energy coupling, the question of redox cooperativity in cytochrome c oxidase is reexamined. Extensive redox cooperativity between more than two redox centers, some of which are spectrally invisible, may be expected for this electron transfer coupled proton pump. Such cooperativity, however, cannot be revealed by the traditional potentiometric experiments based on a difference in absorbance between two wavelengths. Multiwavelength analyses utilizing singular value decomposition and second derivatives of absorbance vs. wavelength have revealed a stronger cooperativity than consistent with the "neoclassical" model, which allowed only for weak negative cooperativity between two equipotential one-electron centers. A thermodynamic analysis of redox cooperativity is developed, which includes the possibilities of strong cooperative redox interactions, the involvement of invisible redox centers, conformational changes, and monomer/dimer equilibrations. The experimental observation of an oxidation of one of the cytochromes (a3) with a decrease in applied redox potential is shown to require both strong negative cooperativity and the participation of more than two one-electron centers. A number of "modern" models are developed using the analytical approaches described in this paper. By testing with experimental data, some of these models are falsified, whereas some are retained with suggestions for further testing.  相似文献   

20.
The aerobic electron transport chain of Paracoccus denitrificans is very similar to that of mitochondria. It has therefore been suggested that this bacterium might be evolutionarily related to mitochondria. The two subunits (Mr 45.000 and 28.000) of the Paracoccus cytochrome c oxidase were isolated and partially sequenced. The sequences were found to be surprisingly homologous to sequences of the subunits I and II of mitochondrial cytochrome c oxidases. The data provide a molecular basis for the symbiotic origin of mitochondria and strongly support the notion that in eucaryotic oxidases subunits I and/or II carry the redox centers, heme and copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号