首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus spores are protected by a structurally and biochemically complex protein shell composed of over 50 polypeptide species, called the coat. Coat assembly in Bacillus subtilis serves as a relatively tractable model for the study of the formation of more complex macromolecular structures and organelles. It is also a critical model for the discovery of strategies to decontaminate B. anthracis spores. In B. subtilis, a subset of coat proteins is known to have important roles in assembly. Here we show that the recently identified B. subtilis coat protein CotO (YjbX) has an especially important morphogenetic role. We used electron and atomic force microscopy to show that CotO controls assembly of the coat layers and coat surface topography as well as biochemical and cell-biological analyses to identify coat proteins whose assembly is CotO dependent. cotO spores are defective in germination and partially sensitive to lysozyme. As a whole, these phenotypes resemble those resulting from a mutation in the coat protein gene cotH. Nonetheless, the roles of CotH and CotO and the proteins whose assembly they direct are not identical. Based on fluorescence and electron microscopy, we suggest that CotO resides in the outer coat (although not on the coat surface). We propose that CotO and CotH participate in a late phase of coat assembly. We further speculate that an important role of these proteins is ensuring that polymerization of the outer coat layers occurs in such a manner that contiguous shells, and not unproductive aggregates, are formed.  相似文献   

2.
Assembly of the Bacillus subtilis spore coat involves over 80 proteins which self-organize into a basal layer, a lamellar inner coat, a striated electrodense outer coat and a more external crust. CotB is an abundant component of the outer coat. The C-terminal moiety of CotB, SKRB, formed by serine-rich repeats, is polyphosphorylated by the Ser/Thr kinase CotH. We show that another coat protein, CotG, with a central serine-repeat region, SKRG, interacts with the C-terminal moiety of CotB and promotes its phosphorylation by CotH in vivo and in a heterologous system. CotG itself is phosphorylated by CotH but phosphorylation is enhanced in the absence of CotB. Spores of a strain producing an inactive form of CotH, like those formed by a cotG deletion mutant, lack the pattern of electrondense outer coat striations, but retain the crust. In contrast, deletion of the SKRB region, has no major impact on outer coat structure. Thus, phosphorylation of CotG by CotH is a key factor establishing the structure of the outer coat. The presence of the cotB/cotH/cotG cluster in several species closely related to B. subtilis hints at the importance of this protein phosphorylation module in the morphogenesis of the spore surface layers.  相似文献   

3.
Bacterial spores are surrounded by a multilayered proteinaceous shell called the coat. In Bacillus subtilis, a coat protein called CotE guides the assembly of a major subset of coat proteins. To understand how CotE carries out its role in coat morphogenesis, we subjected its gene to mutagenesis and studied the effects of altered versions of CotE on coat formation. We identified regions within the C-terminal 28 amino acids that direct the deposition of the coat proteins CotA, CotB, CotG, CotSA, CotS and 35 kDa and 49 kDa proteins likely to be the spore proteins CotR (formerly known as YvdO) and YaaH respectively. The timing and genetic dependency of CotR accumulation are consistent with control of its gene by sigmaK and GerE. In addition, we identified a 35-amino-acid internal region involved in targeting of CotE to the forespore. Finally, we found that sequences within this 35-amino-acid region as well as within an 18-amino-acid stretch in the N-terminus of CotE direct the formation of CotE multimers, most probably homooligomers. These results suggest that: (i) most interactions between CotE and the coat proteins assembled under CotE control take place at the CotE C-terminus; (ii) an internal region of CotE connects it with the forespore surface; and (iii) interactions between CotE molecules depend on residues within an 18-amino-acid region in the N-terminal half of CotE.  相似文献   

4.
The Bacillus subtilis spore is encased in a resilient, multilayered proteinaceous shell, called the coat, that protects it from the environment. A 181-amino-acid coat protein called CotE assembles into the coat early in spore formation and plays a morphogenetic role in the assembly of the coat's outer layer. We have used a series of mutant alleles of cotE to identify regions involved in outer coat protein assembly. We found that the insertion of a 10-amino-acid epitope, between amino acids 178 and 179 of CotE, reduced or prevented the assembly of several spore coat proteins, including, most likely, CotG and CotB. The removal of 9 or 23 of the C-terminal-most amino acids resulted in an unusually thin outer coat from which a larger set of spore proteins was missing. In contrast, the removal of 37 amino acids from the C terminus, as well as other alterations between amino acids 4 and 160, resulted in the absence of a detectable outer coat but did not prevent localization of CotE to the forespore. These results indicate that changes in the C-terminal 23 amino acids of CotE and in the remainder of the protein have different consequences for outer coat protein assembly.  相似文献   

5.
Endospores formed by Bacillus subtilis are encased in a tough protein shell known as the coat, which consists of at least 70 different proteins. We investigated the process of spore coat morphogenesis using a library of 40 coat proteins fused to green fluorescent protein and demonstrate that two successive steps can be distinguished in coat assembly. The first step, initial localization of proteins to the spore surface, is dependent on the coat morphogenetic proteins SpoIVA and SpoVM. The second step, spore encasement, requires a third protein, SpoVID. We show that in spoVID mutant cells, most coat proteins assembled into a cap at one side of the developing spore but failed to migrate around and encase it. We also found that SpoIVA directly interacts with SpoVID. A domain analysis revealed that the N-terminus of SpoVID is required for encasement and is a structural homologue of a virion protein, whereas the C-terminus is necessary for the interaction with SpoIVA. Thus, SpoVM, SpoIVA and SpoVID are recruited to the spore surface in a concerted manner and form a tripartite machine that drives coat formation and spore encasement.  相似文献   

6.
Genes encoding spore coat polypeptides from Bacillus subtilis   总被引:26,自引:0,他引:26  
Endospores of the Gram-positive bacterium Bacillus subtilis are encased in a tough protein shell, known as the coat, that consists of a dozen or more different polypeptides. We have cloned structural genes designated cotA, cotB, cotC and cotD that encode spore coat proteins of Mr 65,000, 59,000, 12,000 and 11,000, respectively. These genes were cloned by using as hybridization probes synthetic oligonucleotides that were designed on the basis of partial NH2-terminal sequence determinations of the purified coat proteins. To determine the location of the cot genes on the chromosome and to study their function genetically, we tagged each gene by insertion of a chloramphenicol-resistance determinant (cat) within its coding sequence. We then replaced each wild-type cot gene in the chromosome with the corresponding, insertionally inactivated gene. Genetic mapping experiments showed that cotA, cotB, cotC and cotD were located at 52 degrees, 290 degrees, 168 degrees and 200 degrees, respectively, on the B. subtilis chromosome. None of the cot::cat insertion mutants were Spo-, but spores of the cotD mutant were found to germinate somewhat more slowly than did wild-type spores, and the cotA mutant was found to be blocked in the appearance of the brown pigment characteristic of colonies of wild-type sporulating cells. Physical and genetic experiments established that cotA was identical to a previously identified gene called pig, known to be responsible for sporulation-associated pigment production. Spores from all four insertion mutants exhibited the wild-type pattern of coat polypeptides, except for the absence in each instance of the corresponding product of the cot gene that had been insertionally inactivated.  相似文献   

7.
8.
Properties of the Bacillus subtilis spore coat.   总被引:15,自引:10,他引:5       下载免费PDF全文
About 70% of the protein in isolated Bacillus subtilis spore coats was solubilized by treatment with a combination of reducing and denaturing agents at alkaline pH. The residue, consisting primarily of protein, was insoluble in a variety of reagents. The soluble proteins were resolved into at least seven bands by sodium dodecyl sulfate gel electrophoresis. About one-half of the total was four proteins of 8,000 to 12,000 daltons. These were relatively tyrosine rich, and one was a glycoprotein. There was also a cluster of proteins of about 40,000 daltons and two or three in the 20,000- to 25,000-dalton range. The insoluble fraction had an amino acid composition and N-terminal pattern of amino acids very similar to those of the soluble coat proteins. A major difference was the presence of considerable dityrosine in performic acid-oxidized preparations of insoluble coats. Coat antigen including a 60,000-dalton protein not present in extracts of mature spores was detected in extracts of sporulating cells by immunoprecipitation. This large antigen turned over in a pulse-chase experiment. Antibodies to either the array of 8,000- to 12,000-dalton coat polypeptides or to the larger coat proteins reacted with this 60,000-dalton species, suggesting a common precursor for many of the mature coat polypeptides. Spore coats seem to be assembled by processing of proteins and by secondary modifications including perhaps dityrosine formation for cross-linking.  相似文献   

9.
Two small genes named sscA (previously yhzE) and orf-62, located in the prsA-yhaK intergenic region of the Bacillus subtilis genome, were transcribed by SigK and GerE in the mother cells during the later stages of sporulation. The SscA-FLAG fusion protein was produced from T(5) of sporulation and incorporated into mature spores. sscA mutant spores exhibited poor germination, and Tricine-SDS-PAGE analysis showed that the coat protein profile of the mutant differed from that of the wild type. Bands corresponding to proteins at 59, 36, 5, and 3 kDa were reduced in the sscA null mutant. Western blot analysis of anti-CotB and anti-CotG antibodies showed reductions of the proteins at 59 kDa and 36 kDa in the sscA mutant spores. These proteins correspond to CotB and CotG. By immunoblot analysis of an anti-CotH antibody, we also observed that CotH was markedly reduced in the sscA mutant spores. It appears that SscA is a novel spore protein involved in the assembly of several components of the spore coat, including CotB, CotG, and CotH, and is associated with spore germination.  相似文献   

10.
11.
When challenged by stresses such as starvation, the soil bacterium Bacillus subtilis produces an endospore surrounded by a proteinaceous coat composed of >70 proteins that are organized into three main layers: an amorphous undercoat, lightly staining lamellar inner coat and electron-dense outer coat. This coat protects the spore against a variety of chemicals or lysozyme. Mutual interactions of the coat's building blocks are responsible for the formation of this structurally complex and extraordinarily resistant shell. However, the assembly process of spore coat proteins is still poorly understood. In the present work, the main focus is on the three spore coat morphogenetic proteins: SpoIVA, SpoVID and SafA. Direct interaction between SpoIVA and SpoVID proteins was observed using a yeast two-hybrid assay and verified by coexpression experiment followed by Western blot analysis. Coexpression experiments also confirmed previous findings that SpoVID and SafA directly interact, and revealed a novel interaction between SpoIVA and SafA. Moreover, gel filtration analysis revealed that both SpoIVA and SpoVID proteins form large oligomers.  相似文献   

12.
13.
14.
Endospores of Bacillus subtilis are encased in a thick, proteinaceous shell known as the coat, which is composed of a large number of different proteins. Here we report the identification of three previously uncharacterized coat-associated proteins, YabP, YheD, and YutH, and their patterns of subcellular localization during the process of sporulation, obtained by using fusions of the proteins to the green fluorescent protein (GFP). YabP-GFP was found to form both a shell and a ring around the center of the forespore across the short axis of the sporangium. YheD-GFP, in contrast, formed two rings around the forespore that were offset from its midpoint, before it eventually redistributed to form a shell around the developing spore. Finally, YutH-GFP initially localized to a focus at one end of the forespore, which then underwent transformation into a ring that was located adjacent to the forespore. Next, the ring became a cap at the mother cell pole of the forespore that eventually spread around the entire developing spore. Thus, each protein exhibited its own distinct pattern of subcellular localization during the course of coat morphogenesis. We concluded that spore coat assembly is a dynamic process involving diverse patterns of protein assembly and localization.  相似文献   

15.
Synthesis of Bacillus cereus spore coat protein   总被引:2,自引:2,他引:0       下载免费PDF全文
The major structural protein of Bacillus cereus spore coats was synthesized, commencing 1 to 2 h after the end of exponential growth, as a precursor with a mass of ca. 65,000 daltons. About 40% of this precursor, i.e. 26,000 daltons, was converted to spore coat monomers of 13,000 daltons each, perhaps as disulfide-linked dimers. The rate of conversion varied, being initially slow, most rapid at the time of morphogenesis of the coat layers, and then slow again late in sporulation, coincident with a decrease in intracellular protease activity. There was a second major spore coat polypeptide of about 26,000 daltons that was extractable from mature spores in variable amounts. This protein had a peptide profile and a reactivity with spore coat protein antibody that were very similar to those of the 13,000-dalton monomers. It is probably a disulfide-linked dimer that is not readily dissociated.  相似文献   

16.
Bacteria assemble complex structures by targeting proteins to specific subcellular locations. The protein coat that encases Bacillus subtilis spores is an example of a structure that requires coordinated targeting and assembly of more than 24 polypeptides. The earliest stages of coat assembly require the action of three morphogenetic proteins: SpoIVA, CotE, and SpoVID. In the first steps, a basement layer of SpoIVA forms around the surface of the forespore, guiding the subsequent positioning of a ring of CotE protein about 75 nm from the forespore surface. SpoVID localizes near the forespore membrane where it functions to maintain the integrity of the CotE ring and to anchor the nascent coat to the underlying spore structures. However, it is not known which spore coat proteins interact directly with SpoVID. In this study we examined the interaction between SpoVID and another spore coat protein, SafA, in vivo using the yeast two-hybrid system and in vitro. We found evidence that SpoVID and SafA directly interact and that SafA interacts with itself. Immunofluorescence microscopy showed that SafA localized around the forespore early during coat assembly and that this localization of SafA was dependent on SpoVID. Moreover, targeting of SafA to the forespore was also dependent on SpoIVA, as was targeting of SpoVID to the forespore. We suggest that the localization of SafA to the spore coat requires direct interaction with SpoVID.  相似文献   

17.
Endospores of Bacillus subtilis are encased in a protein shell, known as the spore coat, composed of a lamella-like inner layer and an electron-dense outer layer. We report the identification and characterization of a gene, herein called cotH, located at 300 degrees on the B. subtilis genetic map between two divergent cot genes, cotB and cotG. The cotH open reading frame extended for 1,086 bp and corresponded to a polypeptide of 42.8 kDa. Spores of a cotH null mutant were normally heat, lysozyme, and chloroform resistant but were impaired in germination. The mutant spores were also pleiotropically deficient in several coat proteins, including the products of the previously cloned cotB, -C, and -G genes. On the basis of the analysis of a cotE cotH double mutant, we infer that CotH is probably localized in the inner coat and is involved in the assembly of several proteins in the outer layer of the coat.  相似文献   

18.
The Bacillus subtilis spore coat protein GerQ is necessary for the proper localization of CwlJ, an enzyme important in the hydrolysis of the peptidoglycan cortex during spore germination. GerQ is cross-linked into high-molecular-mass complexes in the spore coat late in sporulation, and this cross-linking is largely due to a transglutaminase. This enzyme forms an epsilon-(gamma-glutamyl) lysine isopeptide bond between a lysine donor from one protein and a glutamine acceptor from another protein. In the current work, we have identified the residues in GerQ that are essential for transglutaminase-mediated cross-linking. We show that GerQ is a lysine donor and that any one of three lysine residues near the amino terminus of the protein (K2, K4, or K5) is necessary to form cross-links with binding partners in the spore coat. This leads to the conclusion that all Tgl-dependent GerQ cross-linking takes place via these three lysine residues. However, while the presence of any of these three lysine residues is essential for GerQ cross-linking, they are not essential for the function of GerQ in CwlJ localization.  相似文献   

19.
We describe the identification and characterization of a gene, herein designated cotG, encoding an abundant coat protein from the spores of Bacillus subtilis. The cotG open reading frame is 195 codons in length and is capable of encoding a polypeptide of 24 kDa that contains nine tandem copies of the 13-amino-acid long, approximately repeated sequence H/Y-K-K-S-Y-R/C-S/T-H/Y-K-K-S-R-S. cotG is located at 300 degrees on the genetic map close to another coat protein gene, cotB. The cotG and cotB genes are in divergent orientation and are separated by 1.3 kb. Like the promoter for cotB, the cotG promoter is induced at a late stage of sporulation under the control of the RNA polymerase sigma factor sigma K and the DNA-binding protein GerE. The -10 and -35 nucleotide sequences of the cotG promoter resemble those of other promoters recognized by sigma K-containing RNA polymerase, and centered 70 bp upstream of the apparent start site is a sequence that matches the consensus binding site for GerE. Spore coat proteins from a newly constructed cotG null mutant lack not only CotG but also CotB, a finding that suggests that CotG may be a morphogenetic protein that is required for the incorporation of CotB into the coat.  相似文献   

20.
We report evidence that CotC and CotU, two previously identified components of the Bacillus subtilis spore coat, are produced concurrently in the mother cell chamber of the sporulating cell under the control of σK and GerE and immediately assembled around the forming spore. In the coat, the two proteins interact to form a coat component of 23 kDa. The CotU-CotC interaction was not detected in two heterologous hosts, suggesting that it occurs only in B. subtilis. Monomeric forms of both CotU and CotC failed to be assembled at the surface of the developing spore and accumulated in the mother cell compartment of cells mutant for cotE. In contrast, neither CotU nor CotC accumulated in the mother cell compartment of cells mutant for cotH. These results suggest that CotH is required to protect both CotU and CotC in the mother cell compartment of the sporangium and that CotE is needed to allow their assembly and subsequent interaction at the spore surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号