首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Physico-chemical, chemical and biological parameters were studied throughout the composting process of four winery and distillery composts and the data set of compost characteristics was analysed using multivariate techniques: factorial analysis (FA) and linear discriminant analysis (LDA), in order to classify the different parameters studied and thus, to establish those that better describe the composting process of this type of wastes. Through factorial analysis (FA) of the parameters studied throughout the composting process, four components that explained 85.6% of the variability were established. The parameters associated to compost maturity, agronomic character, water-soluble fraction and ammonia and temperature increment were grouped in the components F1, F2, F3 and F4, respectively, which can reduce the number of determinations needed to ascertain the maturity and quality of the composts. In addition, the linear discriminant analysis on the factorial components makes possible to classify the four composts with a percentage of success around 95%.  相似文献   

2.
The effect of raw materials and their proportions in initial mixtures on organic matter (OM) stabilization and nitrogen (N) availability during pit composting in Sub-Saharan Africa was assessed using biochemical fractionation and laboratory incubations to characterize composts sampled throughout the composting process. Stabilization of OM occurred more rapidly in mixtures with slaughter-house wastes, it was progressive in mixture with household refuses while tree leaves compost remained unstable. Carbon mineralization from compost samples was positively correlated to water soluble and hemicellulose-like organic fractions. Mixtures containing large proportions of household refuses reached the highest stability and total N but available N remained weak. Slaughter-house wastes in the initial mixtures made possible to reach good OM stabilization and the largest N availability. The nature of initial mixing influenced composting parameters, OM stabilization and N availability. It is suggested mixing household refuses and slaughter-house wastes with tree leaves to reach better amending and fertilizer qualities of composts.  相似文献   

3.
Cattle slurry solid fraction (SF) with different dry matter (DM) contents was collected from two dairy farms and composted in static and turned piles, with different sizes and cover types, to investigate the effects of pile conditions on the physical and chemical changes in SF during composting and to identify approaches to improve final compost quality. Thermophilic temperatures were attained soon after separation of SF, but the temperature of piles covered with polyethylene did not increase above 60 degrees C. The rate of organic matter (OM) mineralisation increased for turned piles in comparison to static piles, but the maximum amount of mineralisable OM (630-675gkg(-1)) was similar for all pile treatments. The C/N ratio declined from over 36 to a value of 14 towards the end of composting, indicating an advanced degree of OM stabilisation. Mature compost was obtained from raw SF feedstock as indicated by the low compost temperature, low C/N ratio, and low content of NH(4)(+) combined with increased concentrations of NO(3)(-). The efficiency of the composting process was improved and NH(3)-N losses were minimized by increasing DM content of the SF, reducing the frequency of pile turning and managing compost piles without an impermeable cover.  相似文献   

4.
The aims of this study were to assess changes in heavy metal availability in two contrasting feedstocks during aerobic composting, and the availability of said metals in the finished composts. A high C-to-N ratio mixed biodegradable municipal solid waste (MSW) feedstock was successfully composted on its own and in combination with green waste. Changes in heavy metal speciation throughout the composting process were studied using the modified BCR sequential extraction protocol. It was found that total Cu, Pb and Zn concentrations increased over time due to the progressive mineralization of the compost feedstock. Metals were fractionated differently within the two feedstocks, although only Cu showed significant redistribution (mostly to the oxidisable fraction) over the 5 month composting period. The MSW-derived composts performed comparably with other commercially-available composts in a series of plant growth trials. Plant metal accumulation was not influenced by the heavy metals present in the MSW-derived compost implying that they are not plant available. It is recommended that these relatively low value/quality composts may be used for remediation of acidic heavy metal contaminated sites.  相似文献   

5.
The co-composting of exhausted olive-cake with poultry manure and sesame shells was investigated. These organic solid wastes were watered by the confectionary wastewater which is characterized by its high content of residual sugars raising its COD. Four aerated windrows were performed to establish the effects of confectionary by-products on the compost process. Different mixtures of the agro-industrial wastes were used. During the composting process, physico-chemical parameters (temperature, moisture, pH, electrical conductivity, total carbon and total nitrogen) were studied. The stability of the biological system was noticed after 70 days. The final products were characterized by their relatively high organic matter content, and low C/N ratio of 14-17. The humidification of the windrows with the wastewater seemed to have accelerated the composting process in comparison to a windrow humidified with water. In addition, the organic matter degradation was enhanced to reach 55-70%. The application of the obtained composts to soil appeared to significantly improve the soil fertility. Indeed, field experiments showed an increase in potato yield; the production was 30.5-37.5 tons ha(-1), compared to 30.5 tons ha(-1) with farm manure.  相似文献   

6.
7.
湿度对堆肥理化性质的影响   总被引:17,自引:0,他引:17  
罗维  陈同斌 《生态学报》2004,24(11):2656-2663
水分是堆肥微生物生命活动的基础 ,也是堆肥中重要的工艺控制参数。弄清湿度对堆肥微生物及理化性质的影响 ,对于优化堆肥工艺参数、提高堆肥效率、降低投资和运行成本具有重要意义。综述了堆肥湿度研究的动态 ,指出了当前研究中存在的问题 ,并提出了未来的研究方向。大量的研究表明 ,湿度低于 4 5 %或高于 6 5 %都不利于堆肥处理。湿度太高会导致堆料的压实度增加、FAS减少、透气性能降低 ,从而导致堆体内氧气供应不足、堆肥升温困难、有机物降解速率降低、堆肥周期延长。湿度过低 ,水分会限制堆肥微生物的新陈代谢 ,导致微生物活性下降、堆肥腐熟困难。由于鼓风、散热、水蒸发等会使堆体内存在湿度的空间变异 ,也会降低堆肥效率和堆肥产品的质量。另外 ,堆肥湿度还影响堆肥的保肥能力。由各文献得出结论 ,堆肥的最佳湿度范围一般为 5 0 %~ 6 0 %左右  相似文献   

8.
The high fat content in food wastes was suspected to inhibit an industrial in-vessel composting process from reaching the European Union Animal By-Product Regulation (composting temperature >70 °C for 1 h). The aim of this study was to design a test step to guide the mixing ratio of food waste to green waste to meet the regulation. A 15-compartment composting unit was designed to contain the compost mixes. Sausage and cheese wastes were mixed with green waste at 1:1; 1:2; 1:3 and 1:4 ratios by wet weight volume. Only the sausage waste mix ratio of 1:4 gave an average temperature of 70 °C for at least 1 h after 2 days of composting (fat content - 17%; C: N ratio - 8.6). All the cheese waste mixes did not reach 70 °C after 15 days of composting. This study demonstrated that using a simple pre-composting test step could reduce the chances of process failure during industrial composting. Although both sausage and cheese wastes are high in fat, they performed very differently in the composting process. Two linear equations were fitted to model the impact of these wastes on the maximum composting temperature.  相似文献   

9.
Sewage sludge derived from municipal sewage treatment plants is an important source of macronutrients, micronutrients and organic matter. For this reason composting of sewage sludge, along with combustion and co-combustion, is a new management priority in Poland. In this study six composts of different origin and composition were evaluated in terms of their abundance in phosphorus, because it is an essential nutrient for all living organisms. Analyses were conducted on the samples at the initial and at the maturation phase of composting. The bioavailability of phosphorus was estimated on the basis of amounts of the nutrient in isolated fractions using the sequential extraction method. First of all quantitative changes of the total nutrient content and its amounts in separated fractions were dependent on the mixture composition. Irrespective of compost type, 34.5–75.0% of the total amounts of phosphorus were found in hardly available combinations (Fr. III), while available phosphorus forms (Fr. I) accounted for only 6.6–21.6%. As a result of composting together different organic wastes an increase was observed both in the total content and the amounts of this nutrient in separated fractions. This phenomenon was observed particularly in composts with smaller levels of sewage sludge (30–40%), characterised by rapid organic matter decomposition, which was indicated by higher bioavailable amounts of phosphorus. Under such conditions the content of P ranged between 3.68 and 7.4 g kg?1. In comparison to the labile pool of P obtained for matured composts C5 and C6 (65 and 75% of sewage sludge in their composition) amounting to 2.45–3.0 g kg?1 the above values were considerable. Bioavailable phosphorus contents potentially introduced to soil with composts doses calculated at 170 kg total N/ha/yr ranged from 69.8 to 80.2 kg for compost with the lowest share of sewage sludge and from 11.2 to 20.7 kg for compost with the highest share of sewage sludge.  相似文献   

10.
The change of the degree of stability of compost during the composting process was a kind of guideline for our study. This stability was estimated by monitoring the chemical fractionation (extraction of humic and fulvic acids, and humin) during two cycles of composting. Change of humin (H), humic-like acid carbon (CHA) and fulvic-like acid carbon (CFA) fractions during the composting process of municipal solid wastes were investigated using two windrows W1 (100% of municipal solid wastes) and W2 (60% of municipal solid wastes and 40% of dried sewage sludge). Humin and fulvic acid fractions in the two windrows decreased since the start of composting process and tend to stabilize. At the end of composting process, humic acid fraction is more important in the windrow without sludge (W1) than the one with sludge (W2). The humification indexes used in this study showed that the humic-like acid carbon fraction production takes place largely during the phase of temperature increase (thermophilic phase), and it appeared very active in the windrow W2. At the end of composting process, the E4/E6 ratio value indicated that the compost of W1 is more mature than the compost of W2. The humification ratio (HR) allowed a correct estimation of compost organic matter stabilization level.  相似文献   

11.
AIMS: The aim of this work was to study the effect of high temperatures generated during composting process, on the phytopathogen fungus Fusarium oxysporum f.sp. melonis. This investigation was achieved by both in vivo (semipilot-scale composting of horticultural wastes) and in vitro (lab-scale thermal treatments) assays. METHODS AND RESULTS: Vegetable residues infected with F. oxysporum f.sp. melonis were included in compost piles. Studies were conducted in several compost windrows subjected to different treatments. Results showed an effective suppression of persistence and infective capacity, as this process caused complete fungal elimination after 2-3 days of composting. In order to confirm the effect of high temperature during this process, in vitro experiments were carried out. Temperature values of 45, 55 and 65 degrees C were tested. All three treatments caused the elimination of fungal persistence. Treatment at 65 degrees C was especially effective, whereas 45 degrees C eliminated fungal persistence only after 10 days. CONCLUSIONS: The composting process is an excellent alternative for the management of plant wastes after harvesting, as this procedure is able to suppress infective capacity of several harmful phytopathogens such as F. oxysporum f.sp. melonis. SIGNIFICANCE AND IMPACT OF THE STUDY: Fusarium oxysporum f.sp. melonis is a plant pathogen fungus specially important in the province of Almería (south-east Spain), where intensive greenhouse horticulture is very extended. High temperatures reached during composting of horticultural plant wastes ensure the elimination of phytopathogen microorganisms such as F. oxysporum f.sp. melonis from vegetable material, providing an adequate hygienic quality in composts obtained.  相似文献   

12.
在烟草生产及加工过程中,通常会产生大量的烟草废弃物,如何有效利用这些废弃物以避免环境污染和资源浪费,已成为烟草行业亟需解决的问解。研究发现,烟草废弃物堆肥化处理是规模化利用废弃资源的有效途径之一,对烟草农业的绿色、低碳、循环、可持续发展具有重要意义。从有机肥堆肥制备技术、肥效研究等方面进行了系统综述,从整体上展示了烟草废弃物堆肥技术的发展现状,以期为国内烟草废弃物源堆肥未来技术的研发及产业化提供一定的参考。通过分析发现,在堆肥制备技术方面,主要有微生物菌剂添加技术、共堆肥技术和烟草材料预处理技术3种,此外还衍生出液态有机肥和厌氧发酵联产有机肥技术;在堆肥肥效研究方面,烟草废弃物堆肥可明显改善土壤的物性参数、化学参数以及生物学参数,显著钝化土壤重金属元素,进而提高作物的产量或品质,其中堆肥与化学肥料配施的效果相对较好;堆肥的多功能化是未来堆肥创新利用的重要途径。  相似文献   

13.
In-vessel composting of three stocks with originally different degree of organic matter degradation was conducted for: (1) kitchen source-separated bio-waste (BW), (2) aerobic (AS) as well as (3) anaerobic sludges (AnS) from municipal wastewater treatment plant. Composting experiment lasted over a year. The highest activity of the process was in the BW compost. It was implied by the highest temperature, CO(2) release, ammonification and nitrification, intensive accumulation and removal of low-weight carboxylic acids (water- and NaOH-extractable). Between the sludges higher mineralization and CO2 release was in AnS, while ammonification and nitrification were higher in AS compost; no significant difference between sludge composts was noticed for dynamics of pH, conductivity, concentrations of LWCA, and some nutrient compounds and heavy metals. Nitrogen content of the final compost increased in BW, but decreased in AS and AnS. Phytotoxicity of Lepidium sativum was eliminated faster in sludge composts compared to BW compost.  相似文献   

14.
The need for organic recycling is justified in the case of poultry waste because after ensuring hygienization there is a chance of obtaining a compost with substantial fertilizer value. Organic recycling of slaughter waste has its justification in sustainable development and retardation of resources. In the research being described, composting of hydrated poultry slaughterhouse waste with maize straw was carried out. Combinations with fodder yeast and postcellulose lime were also introduced in order to modify chemical and physicochemical properties of the mixtures. The experiment was carried out within 110 days in 1.2 × 1.0 × 0.8 m laboratory reactors. Temperature of the biomass was recorded during composting, and the biomass was actively aerated through a perforated bottom.Composting of substrates selected in such a way caused losses of some elements in gaseous form, an increase in concentration of other elements, and changes in relationships between elements. The ability to select substrates influences compost quality. This ability is determined by chemical indicators. Among other things, compost evaluation based on carbon to nitrogen ratio shows the intensity of the composting process and possible nitrogen losses. The addition of slaughter waste to maize straw reduced the content of individual fractions of carbon in the composts, whereas the addition of postcellulose lime intensified that process. The addition of fodder yeast significantly increased the phosphorus content in the compost. Since iron compounds were used in the processing of poultry carcasses, composts that were based on this material had an elevated iron content. The applied postcellulose lime significantly increased the copper, zinc, chromium, nickel, and lead contents. Proper selection of substrates for composting of hydrated poultry slaughterhouse waste allows to obtain a compost with chemical properties that create favorable conditions for natural application of that compost. Addition of large quantities of postcellulose lime to the composting process leads to obtaining an organic-mineral substratum for cultivation or to obtaining an agent that improves soil properties.  相似文献   

15.
A microarray spotted with 369 different 16S rRNA gene probes specific to microorganisms involved in the degradation process of organic waste during composting was developed. The microarray was tested with pure cultures, and of the 30,258 individual probe-target hybridization reactions performed, there were only 188 false positive (0.62%) and 22 false negative signals (0.07%). Labeled target DNA was prepared by polymerase chain reaction amplification of 16S rRNA genes using a Cy5-labeled universal bacterial forward primer and a universal reverse primer. The COMPOCHIP microarray was applied to three different compost types (green compost, manure mix compost, and anaerobic digestate compost) of different maturity (2, 8, and 16 weeks), and differences in the microorganisms in the three compost types and maturity stages were observed. Multivariate analysis showed that the bacterial composition of the three composts was different at the beginning of the composting process and became more similar upon maturation. Certain probes (targeting Sphingobacterium, Actinomyces, Xylella/Xanthomonas/Stenotrophomonas, Microbacterium, Verrucomicrobia, Planctomycetes, Low G + C and Alphaproteobacteria) were more influential in discriminating between different composts. Results from denaturing gradient gel electrophoresis supported those of microarray analysis. This study showed that the COMPOCHIP array is a suitable tool to study bacterial communities in composts.  相似文献   

16.
Traditional composting systems for biowaste generally produce low quality composts that may endanger recycling. A pilot-scale bioconversion process yielding quality compost and renewable energy was designed and tested. The process consisted of a set of wet physical separation units, composting and anaerobic digestion. Biowaste was divided in four streams by physical separation: (1) organic fraction >2 mm, (2) inorganic fraction 0.05-2 mm, (3) residual fraction composed of organics 0.05-2 mm and the fraction <0.05 mm and (4) a fraction solubilised in the washing water. The organic fraction >2 mm was composted and the compost, high in organic matter and low in EC and heavy metals, aimed at replacing peat in horticulture. The inorganic fraction 0.05-2 mm was completely made up of sand and can be used as a construction material. Solubilised organic matter in the washing water was converted to CH(4) by anaerobic digestion. The residual fraction can be used as landfill cover material.  相似文献   

17.
Enzymatic activity, i.e. respiratory activity, dehydrogenase activity, phosphatase activity, caseinian protease activity, BAA protease activity and urease activity, was determined to investigate the process of biochemical transformations and to select enzymatic indices of maturity of composts prepared from feathers and lignocellulose wastes (bark, straw). Composting was conducted for 7 months, with periodic determinations of activity of the enzymes. The study revealed significant differences in the enzymatic activity, related with the duration of composting and with the substrate composition of the composts. Generally, composts enriched with straw were characterised by higher enzymatic activity than composts without any addition of straw. It was found that the activity of such enzymes as cellulase and protease, towards the end of the period of composting decreased and stabilised. The enzymes enumerated can be taken into consideration in estimation of the maturity of composts prepared from feathers and lignocellulose wastes.  相似文献   

18.
Investigations into the dynamic nature of composting environments are necessary to understand and ultimately optimise the complex processes that occur. In this study, various parameters were measured to investigate physical, chemical and biological changes that occur in compost during the production of Agaricus bisporus. In addition to monitoring the compost samples during mushroom cultivation, uninoculated samples were maintained for comparative purposes. Principal components analysis of the variables measured showed a clear distinction between the thermophilic Phase I composts, uninoculated Phase II composts and mushroom inoculated composts. Leucine assimilation, a novel technique to composting environments, is presented as suitable method for assessing microbial activity in such systems. Strict agreement between leucine assimilation and fluorescein diacetate (FDA) hydrolysis, a rarely used technique in composting environments, was not observed, suggesting that neither should be used as a sole measure of microbial activity in compost. Association of FDA hydrolysis with the culturable heterotrophic count suggests that FDA hydrolysis may indicate bacterial as opposed to total microbial activity.  相似文献   

19.
Blanco  M.-J.  Almendros  G. 《Plant and Soil》1997,196(1):15-25
Chemical maturity parameters in addition to plant growth limiting factors have been monitored in the course of a 2-month composting experiment. Wheat straw with 5% dry w horse manure was adjusted to C/N= 45 with urea. The pile was rotated and homogeneous samples were taken every four days. The most intense changes in straw fractions occurred in the first 20 days of composting, as suggested by wet chemical analyses, thermogravimetry and 13C NMR spectrometry. Nevertheless, plant response to compost application gave significant changes at between 20–60 days that were not clearly reflected by the above techniques. Glasshouse experiments with a soil treated with compost samples taken at the successive transformation stages suggested no linear correlation between composting time and the potential of compost in improving plant yield. In the samples taken after 20 days in the conditions studied, referred to as postmature composts, the ryegrass yield did not depend on most of the organic matter characteristics, but closely paralleled the concentration of available nitrogen and – to lesser extent – phosphorous in the compost. The probable immobilization of these elements in the course of composting was also suggested by plant response experiments with different doses of compost and the addition or not of mineral solution.  相似文献   

20.
Unmar G  Mohee R 《Bioresource technology》2008,99(15):6738-6744
An assessment of the effect of the composting potential of Mater-Bi biodegradable plastic with green wastes, noted by GBIO, and degradable plastic (PDQ-H additive) with green wastes, noted by GDEG, was carried out in a lagged two-compartment compost reactor. The composting time was determined until constant mass of the composting substrates was reached. The green wastes composting process was used as control (G). After one week of composting, the biodegradable plastics disappeared completely, while 2% of the original degradable plastic still remained after about 8 weeks of composting. A net reduction in volatile solids contents of 61.8%, 56.5% and 53.2% were obtained for G, GBIO and GDEG, respectively. Compost quality was assessed in terms of nitrogen, potassium and phosphorus contents, which were found to be highest for GBIO compost. From the phytotoxicity test, it has been observed that a diluted extract of GBIO compost has produced the longest length of radicle. From the respiration test, no significant difference in the amount of carbon dioxide released by the composting of GDEG and G was observed. This study showed that the quality of the compost is not affected by the presence of the biodegradable and degradable plastics in the raw materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号