首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Journal of morphology》2017,278(3):380-389
Unique among amniotes, many lizards are able to self‐detach (autotomize) their tail and then regenerate a replacement. Tail regeneration involves the formation of a blastema, an accumulation of proliferating cells at the site of autotomy. Over time, cells of the blastema give rise to most of the tissues in the replacement tail. In non‐amniotes capable of regenerating (such as urodeles and some teleost fish), the blastema is reported to be essentially avascular until tissue differentiation takes place. For tail regenerating lizards less is known. Here, we investigate neovascularization during tail regeneration in the leopard gecko (Eublepharis macularius ). We demonstrate that the gecko tail blastema is not an avascular structure. Beginning with the onset of regenerative outgrowth, structurally mature (mural cell supported) blood vessels are found within the blastema. Although the pattern of blood vessel distribution in the regenerate tail differs from that of the original, a hierarchical network is established, with vessels of varying luminal diameters and wall thicknesses. Using immunostaining, we determine that blastema outgrowth and tissue differentiation is characterized by a dynamic interplay between the pro‐angiogenic protein vascular endothelial growth factor (VEGF) and the anti‐angiogenic protein thrombospondin‐1 (TSP‐1). VEGF‐expression is initially widespread, but diminishes as tissues differentiate. In contrast, TSP‐1 expression is initially restricted but becomes more abundant as VEGF‐expression wanes. We predict that variation in the neovascular response observed between different regeneration‐competent species likely relates to the volume of the blastema. J. Morphol. 278:380–389, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

2.
3.
Anuran (frog) tadpoles and urodeles (newts and salamanders) are the only vertebrates capable of fully regenerating amputated limbs. During the early stages of regeneration these amphibians form a "blastema", a group of mesenchymal progenitor cells that specifically directs the regrowth of the limb. We report that wnt-3a is expressed in the apical epithelium of regenerating Xenopus laevis limb buds, at the appropriate time and place to play a role during blastema formation. To test whether Wnt/beta-catenin signaling is required for limb regeneration, we created transgenic X. laevis tadpoles that express Dickkopf-1 (Dkk1), a specific inhibitor of Wnt/beta-catenin signaling, under the control of a heat-shock promoter. Heat-shock immediately before limb amputation or during early blastema formation blocked limb regeneration but did not affect the development of contralateral, un-amputated limb buds. When the transgenic tadpoles were heat-shocked following the formation of a blastema, however, they retained the ability to regenerate partial hindlimb structures. Furthermore, heat-shock induced Dkk1 blocked fgf-8 but not fgf-10 expression in the blastema. We conclude that Wnt/beta-catenin signaling has an essential role during the early stages of limb regeneration, but is not absolutely required after blastema formation.  相似文献   

4.
The most intense and widely distributed sudanophilic responses of cryostat-sectioned newt limb tissues were obtained with a simultaneous fix and stain procedure of 1:1 10% formal-calcium and sudan black B. Droplets and globules of lipid mixtures and rodlets (mitochondria) were typical responses distributed within the epidermis, subcutaneous glands, dermis and other connective tissues, striated muscle (also with positive fibrils), tunics of blood vessels, and blood cells. A prominent droplet response was located subjacent to the adepidermal basement membrane. The myelin of brachial nerve stained intensely. In regenerating limbs, the wound epithelium response was comparable to that of epidermis. Post-amputational lipophanerosis of injured muscle and brachial nerves was observed. The retrograde degeneration of nerve myelin was extensive, and continued into the early differentiative phase of regeneration. Lipid-engorged macrophages were prominent among the injured tissues, distal to these, and within the wound epithelium. The regeneration blastema revealed a large quantity of sudanophilic lipid. Prominent droplet and rodlet responses were typical of the myelinating regenerating nerves. The response of regenerating muscle equaled that of the mature stump fibers. The cells of the regenerating chondroskeleton contained sudanophilic lipid. Organic solvents such as acetone, ether, chloroform and chloroform:methanol reduced or prevented the sudanophilic responses. Sudan red 7B revealed less lipid than did sudan black B. A fixation effect was demonstrated with post-chromated formalcalcium, and chromic-formalin fixed sections. In the latter preparations, swollen-bodies, identified as mitochondria, stained intensely.  相似文献   

5.
Tail regeneration in urodeles requires the coordinated growth and patterning of the regenerating tissues types, including the spinal cord, cartilage and muscle. The dorsoventral (DV) orientation of the spinal cord at the amputation plane determines the DV patterning of the regenerating spinal cord as well as the patterning of surrounding tissues such as cartilage. We investigated this phenomenon on a molecular level. Both the mature and regenerating axolotl spinal cord express molecular markers of DV progenitor cell domains found during embryonic neural tube development, including Pax6, Pax7 and Msx1. Furthermore, the expression of Sonic hedgehog (Shh) is localized to the ventral floor plate domain in both mature and regenerating spinal cord. Patched1 receptor expression indicated that hedgehog signaling occurs not only within the spinal cord but is also transmitted to the surrounding blastema. Cyclopamine treatment revealed that hedgehog signaling is not only required for DV patterning of the regenerating spinal cord but also had profound effects on the regeneration of surrounding, mesodermal tissues. Proliferation of tail blastema cells was severely impaired, resulting in an overall cessation of tail regeneration, and blastema cells no longer expressed the early cartilage marker Sox9. Spinal cord removal experiments revealed that hedgehog signaling, while required for blastema growth is not sufficient for tail regeneration in the absence of the spinal cord. By contrast to the cyclopamine effect on tail regeneration, cyclopamine-treated regenerating limbs achieve a normal length and contain cartilage. This study represents the first molecular localization of DV patterning information in mature tissue that controls regeneration. Interestingly, although tail regeneration does not occur through the formation of somites, the Shh-dependent pathways that control embryonic somite patterning and proliferation may be utilized within the blastema, albeit with a different topography to mediate growth and patterning of tail tissues during regeneration.  相似文献   

6.
Mitotic activity, as indicated by DNA synthesis, was studied by autoradiographic analysis along the proximodistal axis of regenerating limbs in the early and later larval stages 53 and 57 of Xenopus laevis. Wound-healing, dedifferentiation, blastema formation and growth phases were studied. Most of the various stump tissues, as well as the cell mass of the regeneration blastema, were involved. The study showed an increase in DNA synthesis in the stump tissues during their dedifferentiation as well as during blastema formation. The increase was confined mainly to the distal portion (close to the amputation level), so that a proximodistal gradient was discernible. This could be regarded as valid evidence of contribution of the severed stump tissues to the blastema cells. The mesenchymal blastema cells formed after amputation at stage 53 displayed higher mitotic activity than the fibrocytoid blastema cells formed at stage 57. Although the latter were more differentiated than the former, they still showed DNA replication and mitotic division.  相似文献   

7.
Prostaglandin metabolism during cell aggregation period was studied in the regenerating tail of the house lizard. On the basis of scanning electron microscopy it was observed that similar kinds of cells in the blastema aggregate to form promuscie aggregate and procartilage aggregate on the 13th day of tail regeneration. In order to understand the prostaglandin metabolism the following parameters were analysed. Fatty acid composition of phospholipids and free fatty acids analysed by gas chromatography. The activity of two rate limiting enzymes-phosholipase A and C, and the activity of the enzymes which are responsible for the oxygenation of polyunsaturated fatty acids-lipoxygenase and cycloxygenase were also estimated. The characterization of the endogenous prostaglandins were carried out by high performance liquid chromatography. On the basis of the above investigations, we observed an increase in phospholipase C activity and resultant increase in free arachidonic acid level. High activity of cycloxygenase and presence of prostaglandin E2 (PGE2) were also observed PGE2 was reported to stimulate cAMP production and resultant cell differentiation. These observations suggest the involvement of prostaglandin metabolism during cell aggregation period in the regenerating blastema and resultant cytodifferentiation of blastemal cells.  相似文献   

8.
Cryostat-cut sections of unamputated and amputated-regenerating limbs of the adult newt were examined following the Nile blue test for acidic and non-acidic lipids, the acid hematein and plasmal tests for phospholipids, and a Schultz test for cholesterol. Triglycerides (Nile blue test) are prominent in dermis and macrophages: triglyceride droplets are scattered in epidermis, wound epithelium, and regeneration blastema. Fatty acids (Nile blue test) are present in all tissues of the normal and regenerating limb: nerve myelin contains relatively little free fatty acid, while macrophages appear to contain the least amount of this lipidic substance. Plasmalogens (plasmal test) are prominent in the myelin of nerves, and macrophages: a weak cytoplasmic reaction obtains in the epidermis, subcutaneous glands, striated muscle, tunics of blood vessels, wound epithelium, blastema cells, chondrocytes, perichondrium and periosteum. Mitochondria responding for cephalin, lecithin, and sphingomyelin (acid hematein test) are ubiquitously distributed among the cells and tissues of the normal and regenerating limb. These phosphatides are prominent in nerve myelin, macrophages, and in dermal droplets: a variable response obtains from the myofibrils of striated muscle. Cholesterol (Schultz test) was demonstrated only in nerve myelin and in macrophages associated with injured nerves. Particular attention was paid to the lipid responses of the regeneration blastema, and the conclusion was reached that not all of the lipid previously demonstrated with sudan dyes was characterized by the current series of lipid tests. A modified Nile blue sulfate test that promises greater specificity in distinguishing between acidic and non-acidic lipids is introduced.  相似文献   

9.
Amputated, regenerating forelimbs have been compared with the contralateral, denervated non-regenerating limb stumps in the adult newt Notophthalmus viridescens, with respect to hyaluronidase activity and the incorporation of 3H-acetate into glycosaminoglycans (GAG). At 10 days after amputation, which is the time of maximum hyaluronate production in the early growing regenerate, incorporation of 3H-acetate into GAG (cpm/mg protein) in the denervated, nonregenerating limb stump was approximately 50% of that in the contralateral regenerating limbs. At this stage, hyaluronate was the major GAG being produced, but the ratio of incorporation into hyaluronate relative to chondroitin sulfate was reduced in the denervated limbs. In intact, nonamputated limbs, the incorporation into GAG was 5% of that in the regenerating limb 10 days after amputation, and 10% of that in the denervated stumps.At 25 days, cartilage is forming and chondroitin sulfate synthesis predominates in the normal regenerate whilst the contralateral, denervated limb stumps are forming scars. GAG synthesis in the latter was less than one-quarter the level seen in the regenerating limbs, mostly due to low incorporation into chondroitin sulfate.Hyaluronidase activity, which appears in the regenerating limb during differentiation of skeletal elements (20–45 days), was not detectable in limbs denervated early enough to prevent regeneration. However, limbs denervated after formation of the blastema will regenerate without nerve, and hyaluronidase activity in such limbs was normal. Thus, hyaluronidase activity appears when regeneration reaches the cartilage deposition stage, with or without nerve.  相似文献   

10.
The objective of this study was to examine the regeneration capacity of the spionid polychaete Marenzelleria viridis from Long Island, New York. In the field, ~7% of the worms exhibited regeneration of the anterior end. In the laboratory, worms were ablated at the 10th–50th chaetiger and their regeneration documented. Anterior morphogenesis was similar to that previously reported for spionids, with wound healing, blastema formation, differentiation of segments, and formation of feeding and sensory structures (mouth, palps, nuchal organs) occurring within 14 d. Unlike in some spionids, the segments do not appear to all form simultaneously from the blastema; rather, external differentiation of segments was observed from posterior to anterior on the regenerate. The number of segments replaced was equal to the number ablated for up to 10 segments. A maximum of 17 segments were replaced when 20–30 chaetigers were ablated, and the number replaced decreased to 14 when 40–50 chaetigers were ablated. Survival and normal growth of the worms decreased with more chaetigers ablated; a significantly higher number of worms died or grew abnormally with ≥30 chaetigers ablated, compared to worms with ≤20 chaetigers ablated. Members of M. viridis could be valuable model organisms in the study of the cellular mechanisms involved in regeneration, and further research on regeneration in the field should be completed.  相似文献   

11.
A highly upregulated gene during tail regeneration in lizards is Wnt2b, a gene broadly expressed during development. The present study examines the distribution of Wnt proteins, most likely wnt2b, by western blotting and immunofluorescence in the blastema-cone of lizards using a specific antibody produced against a lizard Wnt2b protein. Immunopositive bands at 48–50 and 18 kDa are present in the regenerative blastema, the latter likely as a degradation product. Immunofluorescence is mainly observed in the wound epidermis, including in the Apical Epidermal Peg where the protein appears localized in intermediate and differentiating keratinocytes. Labeling is more intense along the perimeter of keratinocytes, possibly as a secretory product, and indicates that the high epidermal proliferation of the regenerating epidermis is sustained by Wnt proteins. The regenerating spinal cord forms an ependymal tube within the blastema and shows immunolabeling especially in the cytoplasm of ependymal cells contacting the central canal where some secretion might occur. Also, regenerating nerves and proximal spinal ganglia innervating the regenerating blastema contain this signaling protein. In contrast, the blastema mesenchyme, muscles and cartilage show weak immunolabeling that tends to disappear in tissues located in more proximal regions, close to the original tail. However, a distal to proximal gradient of Wnt proteins was not detected. The present study supports the hypothesis that Wnt proteins, in particular Wnt2b, are secreted by the apical epidermis covering the blastema and released into the mesenchyme where they stimulate cell multiplication.  相似文献   

12.
Enchytraeus japonensis is a highly regenerative oligochaete annelid that can regenerate a complete individual from a small body fragment in 4–5 days. In our previous study, we performed complementary deoxyribonucleic acid subtraction cloning to isolate genes that are upregulated during E. japonensis regeneration and identified glutamine synthetase (gs) as one of the most abundantly expressed genes during this process. In the present study, we show that the full-length sequence of E. japonensis glutamine synthetase (EjGS), which is the first reported annelid glutamine synthetase, is highly similar to other known class II glutamine synthetases. EjGS shows a 61–71% overall amino acid sequence identity with its counterparts in various other animal species, including Drosophila and mouse. We performed detailed expression analysis by in situ hybridization and reveal that strong gs expression occurs in the blastemal regions of regenerating E. japonensis soon after amputation. gs expression was detectable at the cell layer covering the wound and was found to persist in the epidermal cells during the formation and elongation of the blastema. Furthermore, in the elongated blastema, gs expression was detectable also in the presumptive regions of the brain, ventral nerve cord, and stomodeum. In the fully formed intact head, gs expression was also evident in the prostomium, brain, the anterior end of the ventral nerve cord, the epithelium of buccal and pharyngeal cavities, the pharyngeal pad, and in the esophageal appendages. In intact E. japonensis tails, gs expression was found in the growth zone in actively growing worms but not in full-grown individuals. In the nonblastemal regions of regenerating fragments and in intact worms, gs expression was also detected in the nephridia, chloragocytes, gut epithelium, epidermis, spermatids, and oocytes. These results suggest that EjGS may play roles in regeneration, nerve function, cell proliferation, nitrogenous waste excretion, macromolecule synthesis, and gametogenesis.  相似文献   

13.
The regenerating forelimb of the adult newt, Notophthalmus viridescens was investigated for 5'-nucleotidase (5' ribonucleotide phosphohydrolase, 3.1.3.5) acitivity. The newt's humeri were surgically removed, and after a twenty-one-day recovery period, the forelimbs amputated above the elbows. Regenerates were sampled at predetermined times for specific phases in the progress of regeneration, frozen, sectioned in a cryostat, and the sections fixed in 10% cold formol calcium. The Wachstein and Meisel [25] lead procedure at neutral pH was used predominately in these experiments, although tests were also conducted with Gomori's [14] calcium, Allen's [21] highly alkaline procedures. The substrates used to obtain specific enzyme reactions were adenine, cytosine, guanine, uracil and inosine 5'-monophosphate nucleotides. Sodium beta-glycerophosphate served as a non-specific phosphomonoesterase substrate, distilled water replaced substrate, and inhibitors such as zinc and cyanide ions were used as control measures to assist in increasing the precision in interpreting the results obtained. The most reactive 5'-nucleotidase (5'-Nase) loci were in the walls of the blood vascular system, mysial and neural sheaths, dermis, and periosteum: the principal cells involved were macrophages, endothelium of blood vessels, and fibrocytes of connective tissues. A moderate enzyme response was elicited from secretory cells of some of the subcutaneous glands, hypertrophied chondrocytes and osteogenic centers, chondrocytes in the articular regions and within red blood cells and leucocytes. Normal, injured and degenerating, or regenerating striated muscle and nerve fibers were judged unreactive for 5'-Nase. The epidermis and wound epithelium displayed negative responses for 5'-Nase. Cells forming the regeneration blastema were 5'-Nase reactive during the early formative phase, but with growth and development of the blastema into bulb and conic forms, these cells did not respond for this enzyme-activity. One suggestion offered is that the absence of 5'-Nase in cells of the blastema may be related to the lack of an adequate blood-vascular supply. Several functions of 5'-Nase in normal and regenerating tissues are discussed. A basic conclusion reached is that 5'-nucleotidase hydrolyses may be more involved in fundamental anabolic than in catabolic metabolism.  相似文献   

14.
15.
Dorsal iris from the eyes of adult Notophthalmus viridescens was transplanted into the blastema of regenerating limbs, subcutaneously in the limb or shoulder region, into the dorsal fin of larval newts and into the hindbrain of larval Ambystoma maculatum. The iris implants into the blastema regenerated lens vesicles or lenses with fibers in 40–75% of the cases. Multiple lenses were found in a few instances. No lenses developed from iris implants into the dorsal fin. Twenty percent of subcutaneous implants of iris formed lenses or lens vesicles, but lens regeneration from implants into the brain occurred only rarely. Denervation of the limb at the time of iris transplantation into the blastema greatly reduced the number of lenses regenerated. Studies on nerve fiber distribution in dorsal fin, subcutaneous areas, and denervated and innervated regenerating limbs, using the Bodian method, showed a general correlation between density of nerve fibers in the implant site and the incidence of lens regeneration from iris implants into that site. These results provide some evidence for a trophic action of nerve fibers on lens regeneration from the iris.  相似文献   

16.
The immunolocalization of the muscle segmental homoeobox protein Msx1‐2 of 27–34 kDa in the regenerating tail blastema of a lizard shows prevalent localization in the apical ependyma of the regenerating spinal cord and less intense labelling in the wound epidermis, in the apical epidermal peg (AEP), and in the regenerating segmental muscles. The AEP is a micro‐region of the regenerating epidermis located at the tail tip of the blastema, likely corresponding to the AEC of the amphibian blastema. No immunolabelling is present in the wound epidermis and scarring blastema of the limb at 18–21 days of regeneration, except for sparse repairing muscles. The presence of a proximal–distal gradient of Msx1‐2 protein, generated from the apical ependyma, is suggested by the intensity of immunolabelling. The AEP and the ependyma are believed to induce and maintain tail regeneration, and this study suggests that Msx1‐2 proteins are components of the signalling system that maintains active growth of the tail blastema. The lack of activation and production of Msx1‐2 protein in the limb are likely due to the intense inflammatory reaction following amputation. This study confirms that, like during regeneration in fishes and amphibians, also the blastema of lizards utilizes common signalling pathways for maintaining regeneration.  相似文献   

17.
18.
Monoclonal antibody 9G1 (mAb 9G1) is reactive to the wound epithelium of axolotl larvae and therefore provided the opportunity to examine the interaction between the wound epithelium, nerves, and blastemal mesenchyme during axolotl limb regeneration. In unamputated limbs, mAb 9G1 is reactive to most or all cells of the dermis, skeletal elements, blood vessels, and nerves, to a few unidentified cells in muscle, and to none in epidermis. During regeneration of axolotl limbs, mAb 9G1 reacts strongly to an intracellular antigen of the blastemal mesenchyme and of the distal-most portion of the wound epithelium, the so-called apical epithelial cap (AEC). Because this thickened wound epithelium of regenerating amphibian limbs has been suggested as functioning in a manner similar to the apical ectodermal ridge (AER) of embryonic limb buds, it was of interest to further examine the reactivity of mAb 9G1 during various stages of regeneration. Whether mAb 9G1 reactivity in the AEC depended on mesenchyme and/or nerves was also tested. Monoclonal antibody 9G1 reactivity appears in the AEC of regenerating limbs prior to outgrowth of the blastema and persists throughout blastemal stages. Apical epithelial cap reactivity to mAb 9G1 is nerve dependent during early stages of blastema development and becomes nerve-independent at later stages. When epithelium-free blastemal mesenchyme is grafted onto injured flank musculature, ectopic limb regeneration occurs and the AEC derived from flank epidermis exhibits mAb 9G1 reactivity. These results show that a mAb 9G1 reactive AEC is characteristic of regenerating limbs and that expression of the 9G1 antigen by the AEC is dependent upon underlying blastemal mesenchyme and nerves.  相似文献   

19.
In corneal epithelium of CBA mice the index of colchicine mitoses diminished after splenectomy in the day period characterized by rising mitotic activity in control animals. The duration of active phase of cell division rhythm shortened while the maximum of mitotic activity delayed in comparison with control animals. The total amount of cells entering mitosis during 24 hours diminished by 27.7% and the rate of physiological regeneration of corneal epithelium decreased.  相似文献   

20.
Adenylate cyclase (AC) was localized ultracytochemically in certain tissues of the regenerating planarian Dugesia lugubris. Studies were carried out from one hour after injury up to the 5th day of regeneration. It was found that the greatest amount of active AC appears during the initial hours of regeneration in the membranes of the muscle cells near the wound, in the epithelial cells surrounding the wound, and in rhabdite-forming cells and neoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号