首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the caspase family of cysteine proteases coordinate the morphological and biochemical events that typify apoptosis. However, neutralization of caspase activity in mammals fails to block death in response to most proapoptotic stimuli. This is because many cell death triggers provoke mitochondrial dysfunction upstream of caspase activation as a consequence of BAX/BAK channel opening. Although genetic or pharmacological inactivation of caspases fails to block cell death in most instances, it does convert the phenotype from apoptosis to necrosis. This has important implications for how the immune system responds to such cells, as necrotic cells provoke inflammation whereas apoptotic cells typically do not. Here, we propose an alternative perspective on apoptosis-associated caspase function by suggesting that these proteases are activated, not to kill, but to extinguish the proinflammatory properties of dying cells. This perspective unifies the mammalian caspase family as either positive or negative regulators of inflammation.  相似文献   

2.
Polyphenol phytoalexin (resveratrol), found in grapes and red wine is a strong chemopreventive agent with promising safety records with human consumption and unique forms of cell death induction in a variety of tumor cells. However, the mechanism of resveratrol-induced apoptosis upstream of mitochondria is still not defined. The results from this study suggest that caspase-2 activation occurs upstream of mitochondria in resveratrol-treated cells. The upstream activation of caspase-2 is not dependent on its antioxidant property or NF-kappaB inhibition. The activated caspase-2 triggers mitochondrial apoptotic events by inducing conformational changes in Bax/Bak with subsequent release of cytochrome c, apoptosis-inducing factor, and endonuclease G. Caspase-8 activation seems to be independent of these events and does not appear to be mediated by classical death receptor processing or downstream caspases. Both caspase-2 and caspase-8 contribute toward the mitochondrial translocation of Bid, since neither caspase-8 inhibition nor caspase-2 inhibition could prevent translocation of Bid DsRed into mitochondria. Caspase-2 inhibitors or antisense silencing of caspase-2 prevented cell death induced by resveratrol and partially prevented processing of downstream caspases, including caspase-9, caspase-3, and caspase-8. Studies using mouse embryonic fibroblasts deficient for both Bax and Bak indicate the contribution of both Bax and Bak in mediating cell death induced by resveratrol and the existence of Bax/Bak-independent cell death possibly through caspase-8- or caspase-2-mediated mitochondria-independent downstream caspase processing.  相似文献   

3.
Caspases are thought to be essential in execution of death receptor-induced apoptosis. However, recent findings suggest the existence of alternative pathways independent of caspases. We provide further evidence for such signaling in hepatocytes. RESULTS: Death receptor-induced activation of caspases and apoptosis in primary murine hepatocytes was completely blocked in presence of 1.5 microM N-benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)fluoromethylketone (zVAD-fmk). Whereas the same concentration of the inhibitor was sufficient to block TNF receptor 1-, CD95- or TRAIL receptor 1/-2-induced activation of caspases in primary human hepatocytes or HepG2 cells, complete prevention apoptotic cell death needed almost 100 microM zVAD-fmk. Under caspase-inhibitory but non-protective conditions, i.e. at 1.5 microM zVAD-fmk, various serine protease inhibitors prevented apoptosis-like cell death. Neither sole arrest of caspases nor inhibition of serine proteases alone protected human hepatocytes. CONCLUSION: Human but not murine hepatocytes bear the potential to activate a permissive, serine protease inhibitor-sensitive alternative death signaling pathway under caspase-inhibitory conditions.  相似文献   

4.
To elucidate mechanism of cell death in response to hypoxia, we attempted to compare hypoxia-induced cell death of HepG2 cells with cisplatin-induced cell death, which has been well characterized as a typical apoptosis. Cell death induced by hypoxia turned out to be different from cisplatin-mediated apoptosis in cell viability and cleavage patterns of caspases. Hypoxia-induced cell death was not associated with the activation of p53 while cisplatin-induced apoptosis is p53 dependent. In order to explain these differences, we tested involvement of μ-calpain and m-calpain in hypoxia-induced cell death. Calpains, especially μ-calpain, were initially cleaved by hypoxia, but not by cisplatin. Interestingly, the treatment of a calpain inhibitor restored PARP cleavage that was absent during hypoxia, indicating the recovery of activated caspase-3. The inhibition of calpains prevented proteolysis induced by hypoxia. In addition, hypoxia resulted in a necrosis-like morphology while cisplatin induced an apoptotic morphology. The calpain inhibitor prevented necrotic morphology induced by hypoxia and converted partially to apoptotic morphology with nuclear segmentation. Our result suggests that calpains are involved in hypoxia-induced cell death that is likely to be necrotic in nature and the inhibition of calpain switches hypoxia-induced cell death to apoptotic cell death without affecting cell viability.  相似文献   

5.
During apoptosis, the cell actively dismantles itself and reduces cell size by the formation and pinching off of portions of cytoplasm and nucleus as "apoptotic bodies." We have combined our previously established quantitative assay relating the amount of release of [3H]-membrane lipid to the degree of apoptosis with electron microscopy (EM) at a series of timepoints to study apoptosis of lymphoid cells exposed to vincristine or etoposide. We find that the [3H]-membrane lipid release assay correlates well with EM studies showing the formation and release of apoptotic bodies and cell death, and both processes are regulated in parallel by inducers or inhibitors of apoptosis. Overexpression of Bcl-2 or inhibition of caspases by DEVD inhibited equally well the activation of caspases as indicated by PARP cleavage. They also inhibited [3H]-membrane lipid release and release of apoptotic bodies. EM showed that cells overexpressing Bcl-2 displayed near-normal morphology and viability in response to vincristine or etoposide. In contrast, DEVD did not prevent cell death. Although DEVD inhibited the chromatin condensation, PARP cleavage, release of apoptotic bodies, and release of labeled lipid, DEVD-treated cells showed accumulation of heterogeneous vesicles trapped in the condensed cytoplasm. These results suggest that inhibition of caspases arrested the maturation and release of apoptotic bodies. Our results also imply that Bcl-2 regulates processes in addition to caspase activation.  相似文献   

6.
Apoptosis is triggered by the activation of caspases and characterized by chromatin condensation and nuclear fragmentation (type II nuclear morphology). Necrosis is depicted by a gain in cell volume (oncosis), swelling of organelles, plasma membrane leakage, and subsequent loss of intracellular contents. Although considered as different cell death entities, there is an overlap between apoptosis and necrosis. In this sense, mounting evidence suggests that both processes can be morphological expressions of a common biochemical network known as “apoptosis-necrosis continuum.” To gain insight into the events driving the apoptosis-necrosis continuum, apoptotically proficient cells were screened facing several apoptotic inducers for the absence of type II apoptotic nuclear morphologies. Chelerythrine was selected for further studies based on its cytotoxicity and the lack of apoptotic nuclear alterations. Chelerythrine triggered an early plasma membrane leakage without condensed chromatin aggregates. Ultrastructural analysis revealed that chelerythrine-mediated cytotoxicity was compatible with a necrotic-like type of cell death. Biochemically, chelerythrine induced the activation of caspases. Moreover, the inhibition of caspases prevented chelerythrine-triggered necrotic-like cell death. Compared with staurosporine, chelerythrine induced stronger caspase activation detectable at earlier times. After using a battery of chemicals, we found that high concentrations of thiolic antioxidants fully prevented chelerythrine-driven caspase activation and necrotic-like cell death. Lower amounts of thiolic antioxidants partially prevented chelerythrine-mediated cytotoxicity and allowed cells to display type II apoptotic nuclear morphology correlating with a delay in caspase-3 activation. Altogether, these data support that an early and pronounced activation of caspases can drive cells to undergo a form of necrotic-like regulated cell death.  相似文献   

7.
The adapter protein FADD consists of two protein interaction domains: a death domain and a death effector domain. The death domain binds to activated death receptors such as Fas, whereas the death effector domain binds to procaspase 8. An FADD mutant, which consists of only the death domain (FADD-DD), inhibits death receptor-induced apoptosis. FADD-DD can also activate a mechanistically distinct, cell type-specific apoptotic pathway that kills normal but not cancerous prostate epithelial cells. Here, we show that this apoptosis occurs through activation of caspases 9, 3, 6, and 7 and a serine protease. Simultaneous inhibition of caspases and serine proteases prevents FADD-DD-induced death. Inhibition of either pathway alone does not prevent cell death but does affect the morphology of the dying cells. Normal prostate epithelial cells require both the caspase and serine protease inhibitors to efficiently prevent apoptosis in response to TRAIL. In contrast, the serine protease inhibitor does not affect TRAIL-induced death in prostate tumor cells suggesting that the FADD-DD-dependent pathway can be activated by TRAIL. This apoptosis pathway is activated in a cell type-specific manner that is defective in cancer cells, suggesting that this pathway may be targeted during cancer development.  相似文献   

8.
Mild insults to neurons caused by ischemia or glutamate induce apoptosis, whereas severe insults induce non apoptotic death, such as necrosis. The molecular targets that are damaged by these insults and ultimately induce cell death are not fully established. To determine if DNA damage can induce apoptotic or non apoptotic death depending on the severity, neurons were treated with up to 128 Gy of ionizing radiation. Such treatment induced a dose-related increase in DNA single-strand breaks but no immediate membrane disruption or lipid peroxidation. Following moderate doses of < or = 32 Gy, neuronal death had many characteristics of apoptosis including nuclear fragmentation and DNA laddering. Nuclear fragmentation and membrane breakdown after moderate DNA damage could be blocked by inhibition of active protein synthesis with cycloheximide and by inhibition of caspases. In contrast, cell death after doses of > 32 Gy was not blocked by cycloheximide or caspase inhibitors, and membrane breakdown occurred relatively early in the cell death process. These data suggest that cell death after high dose irradiation and severe DNA damage can occur by non apoptotic mechanisms and that blocking apoptotic pathways may not prevent death after severe damage.  相似文献   

9.
Myeloic cells express a peculiar surface receptor for extracellular ATP, called the P2Z/P2X7 purinoreceptor, which is involved in cell death signalling. Here, we investigated the role of caspases, a family of proteases implicated in apoptosis and the cytokine secretion. We observed that extracellular ATP induced the activation of multiple caspases including caspase-1, -3 and -8, and subsequent cleavage of the caspase substrates PARP and lamin B. Using caspase inhibitors, it was found that caspases were specifically involved in ATP-induced apoptotic damage such as chromatin condensation and DNA fragmentation. In contrast, inhibition of caspases only marginally affected necrotic alterations and cell death proceeded normally whether or not nuclear damage was blocked. Our results therefore suggest that the activation of caspases by the P2Z receptor is required for apoptotic but not necrotic alterations of ATP-induced cell death.  相似文献   

10.
Yersinia outer protein P (YopP) is a virulence factor of Yersinia enterocolitica that is injected into the cytosol of host cells where it targets MAP kinase kinases (MKKs) and inhibitor of κB kinase (IKK)-β resulting in inhibition of cytokine production as well as induction of apoptosis in murine macrophages and dendritic cells (DC). Here we show that DC death was only partially prevented by the broad spectrum caspase inhibitor zVAD-fmk, indicating simultaneous caspase-dependent and caspase-independent mechanisms of cell death induction by YopP. Microscopic analyses and measurement of cell size demonstrated necrosis-like morphology of caspase-independent cell death. Application of zVAD-fmk prevented cleavage of procaspases and Bid, decrease of the inner transmembrane mitochondrial potential ΔΨm and mitochondrial release of cytochrome c. From these data we conclude that YopP-induced activation of the mitochondrial death pathway is mediated upstream via caspases. In conclusion, our results suggest that YopP simultaneously induces caspase-dependent apoptotic and caspase-independent necrosis-like death in DC. However, it has to be resolved if necrosis-like DC death occurs independently from apoptotic events or as an apoptotic epiphenomenon.  相似文献   

11.
DNA fragmentation is a hallmark of apoptosis that is induced by apoptotic stimuli in various cell types. Apoptotic signal pathways, which eventually cause DNA fragmentation, are largely mediated by the family of cysteinyl aspartate-specific protease caspases. Caspases mediate apoptotic signal transduction by cleavage of apoptosis-implicated proteins and the caspases themselves. In the process of caspase activation, reversible protein phosphorylation plays an important role. The activation of various proteins is regulated by phosphorylation and dephosphorylation, both upstream and downstream of caspase activation. Many kinases/phosphatases are involved in the control of cell survival and death, including the mitogen-activated protein kinase signal transduction pathways. Reversible protein phosphorylation is involved in the widespread regulation of cellular signal transduction and apoptotic processes. Therefore, phosphatase/kinase inhibitors are commonly used as apoptosis inducers/inhibitors. Whether protein phosphorylation induces apoptosis depends on many factors, such as the type of phosphorylated protein, the degree of activation and the influence of other proteins. Phosphorylation signaling pathways are intricately interrelated; it was previously shown that either induction or inhibition of phosphorylation causes cell death. Determination of the relationship between protein and phosphorylation helps to reveal how apoptosis is regulated. Here we discuss DNA fragmentation and protein phosphorylation, focusing on caspase and serine/threonine protein phosphatase activation.  相似文献   

12.
Recent data suggest that alpha-toxin, the major hemolysin of Staphylococcus aureus, induces cell death via the classical apoptotic pathway. Here we demonstrate, however, that although zVAD-fmk or overexpression of Bcl-2 completely abrogated caspase activation and internucleosomal DNA fragmentation, they did not significantly affect alpha-toxin-induced death of Jurkat T or MCF-7 breast carcinoma cells. Caspase inhibition had also no effect on alpha-toxin-induced lactate dehydrogenase release and ATP depletion. Furthermore, whereas early assessment of apoptosis induction by CD95 resulted solely in the generation of cells positive for active caspases that were, however, not yet permeable for propidium iodide, a substantial proportion of alpha-toxin-treated cells were positive for both active caspases and PI. Finally, electron microscopy demonstrated that even in the presence of active caspases, alpha-toxin-treated cells displayed a necrotic morphology characterized by cell swelling and cytoplasmic vacuolation. Together, our data suggest that alpha-toxin-induced cell death proceeds even in the presence of activated caspases, at least partially, in a caspase-independent, necrotic-like manner.  相似文献   

13.
Spermatogenesis results from a balance between proliferation and apoptosis. An alteration in this balance could lead to testicular diseases such as testicular tumour or infertility. Apoptosis seem to be important in regulating the processes of spermatogenesis since 60 to 75% of germ cells do not reach the spermatozoa stage. The various molecules of the apoptotic cascade have been detected in rodent or human germ cells, such as effector caspases and upstream proteins from cell death receptor or mitochondrial pathways. One or several different pathways may be involved in the germ cell apoptotic process triggered physiologically, by hormonal deprivation, or by chemical or physical inducers. Finally, caspases appear to play a role in various testicular diseases (particularly infertility).  相似文献   

14.
Caspase activation and apoptotic volume decrease are fundamental features of programmed cell death; however, the relationship between these components is not well understood. Here we provide biochemical and genetic evidence for the differential involvement of initiator caspases in the apoptotic volume decrease during both intrinsic and extrinsic activation of apoptosis. Apoptosis induction in Jurkat T lymphocytes by Fas receptor engagement (intrinsic) or ultraviolet (UV)-C radiation (extrinsic) triggered the loss of cell volume, which was restricted to cells with diminished intracellular K(+) ions. These characteristics kinetically coincided with the proteolytic processing and activation of both initiator and effector caspases. Although the polycaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone completely inhibited the Fas-mediated apoptotic volume decrease and K(+) efflux, it was much less effective in preventing these processes during UV-induced cell death under conditions whereby caspase activities and DNA degradation were blocked. To define the roles of specific initiator caspases, we utilized Jurkat cells genetically deficient in caspase-8 or stably transfected with a dominant-negative mutant of caspase-9. The results show that the activation of caspase-8, but not caspase-9, is necessary for Fas-induced apoptosis. Conversely, caspase-9, but not caspase-8, is important for UV-mediated shrunken morphology and apoptosis progression. Together, these findings indicate that cell shrinkage and K(+) efflux during apoptosis are tightly coupled, but are differentially regulated by either caspase-8 or caspase-9 depending on specific pathways of cell death.  相似文献   

15.
Apoptosis is a highly controlled process, whose triggering is associated with the activation of caspases. Apoptosis can be induced via a subgroup of the tumor necrosis factor (TNF) receptor superfamily, which recruit and activate pro-caspase-8 and -10. Regulation of apoptosis is achieved by several inhibitors, including c-FLICE-inhibitory protein, which prevents apoptosis by inhibiting the pro-apoptotic activation of upstream caspases. Here we show that the human intracellular serine protease inhibitor (serpin), protease inhibitor 9 (PI9), inhibits TNF-, TNF-related apoptosis-inducing ligand- and Fas ligand-mediated apoptosis in certain TNF-sensitive cell lines. The reactive center P1 residue of PI9 was required for this inhibition since PI9 harboring a Glu --> Ala mutation in its reactive center failed to impair death receptor-induced cell death. This suggests a classical serpin-protease interaction. Indeed, PI9 inhibited apoptotic death by directly interacting with the intermediate active forms of caspase-8 and -10. This indicates that PI9 can regulate pro-apoptotic apical caspases.  相似文献   

16.
Defects in the control of cell death are a major cause of resistance to tumor therapy. Until recently, components of the intrinsic apoptotic pathway that act downstream of mitochondria, such as the caspases, have been apportioned only a minor share in this business. Thus, defects in mitochondrial caspase activation were suggested to cause apoptosis inhibition but not to confer clonogenic survival. This assumption was based on the finding that chemotherapeutic agents provoke mitochondrial damage even the absence of caspases, resulting in the release various toxic mediators and a subsequent caspase-independent cell death. In contrast to these earlier observations, we recently showed that in the absence of active caspases tumor cells do not necessarily undergo caspase-independent cell death but may even survive a chemotherapeutic insult. Our findings suggest that caspase inhibition can indeed promote clonogenic tumor growth which might be not only relevant for tumor therapy but should be also considered when evaluating the safety of therapeutic caspases inhibitors.  相似文献   

17.
MAPK signaling is involved in camptothecin-induced cell death   总被引:3,自引:0,他引:3  
Camptothecin, a topoisomerase I inhibitor, is a well-known anticancer drug. However, its mechanism has not been well studied in human gastric cancer cell lines. Camptothecin induced apoptotic cell death in human gastric cancer cell line AGS. Z-VAD-fmk, pan-caspase inhibitor, blocked apoptotic phenotypes induced by camptothecin suggesting that caspases are involved in camptothecin-induced cell death. An inhibitor of caspase-6 or -8 or -9 did not prevent cell death by camptothecin. Various protease inhibitors failed to prevent camptothecin-induced cell death. These results suggest that only few caspases are involved in camptothecin-induced cell death. Camptothecin induced phosphorylation of ERK1/2, JNK, and p38 MAPK, in a dose and time-dependent manner in AGS. Z-VAD-fmk did not affect MAPK signaling induced by camptothecin suggesting that caspase signaling occurs downstream of MAPK signaling. Blocking of p38 MAPK, but not ERK1/2, resulted in partial inhibition of cell death and PARP cleavage by camptothecin in AGS. Taken together, MAPK signaling is associated with apoptotic cell death by camptothecin.  相似文献   

18.
In an attempt to investigate the molecular mechanism that leads to apoptotic death in Chinese hamster ovary (CHO) cells in batch and fed-batch cultures, we cloned caspase-2, -8 and -9 from a CHO cDNA library. Recombinant Chinese hamster caspase-2 and -9 expressed in Escherichia coli show highest activities towards commercial peptide substrates Ac-VDVAD-pNA and Ac-LEHD-pNA, the designated commercial substrates for human caspase-2 and -9, respectively. However, Chinese hamster caspase-8 shows a broad specificity profile and it cleaves the caspase-9 substrate more efficiently than it cleaves the caspase-8 substrate. The commercially available fluoromethyl ketone type of caspase inhibitors, such as Z-LEHD-fmk, Z-IETD-fmk, Z-VDVAD-fmk and Z-DEVD-fmk, were shown to completely lack specificity in inhibiting these caspases. The reversible aldehyde form of inhibitors for human caspase-8 and -9, Ac-LEHD-CHO and Ac-IETD-CHO, are equally efficient in inhibiting Chinese hamster caspase-8. Therefore, the wildly used method of utilizing the "caspase-specific" inhibitors to track the role of individual caspases in dying cells can be inaccurate and thus misleading. As an alternative, we stably expressed dominant negative (DN) mutants of Chinese hamster caspase-2, -8 and -9 to specifically inhibit these enzymes in CHO cells. Our results showed that inhibition of either endogenous caspase-8 or caspase-9 enhanced the viability of the CHO cells in both batch and fed-batch suspension cultures, but the inhibition of caspase-2 had minimal effects. These results suggest that caspase-8 and -9 are possibly involved in the apoptotic cell death in batch and fed-batch cultures of CHO cells, whereas caspase-2 is not. These findings can be valuable in the development of strategies for genetically engineering CHO cells to counter apoptotic death in batch and fed-batch cultures.  相似文献   

19.
Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology   总被引:21,自引:0,他引:21  
Caspases are the central component of the apoptotic machinery that irreversibly commits a cell to die. Whereas all caspases are structurally similar, those involved in apoptosis can be categorized functionally as either initiator or effector caspases, which are activated by distinct mechanisms. The activated caspases are subject to inhibition by the inhibitor of apoptosis family of proteins. This inhibition can be removed by Smac/DIABLO during apoptosis. The underlying molecular mechanisms of caspase regulation are discussed in this article.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号