首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amide-type pipecoloxylidide local anesthetics, bupivacaine, and ropivacaine, show cardiotoxic effects with the potency depending on stereostructures. Cardiotoxic drugs not only bind to cardiomyocyte membrane channels to block them but also modify the physicochemical property of membrane lipid bilayers in which channels are embedded. The opposite configurations allow enantiomers to be discriminated by their enantiospecific interactions with another chiral molecule in membranes. We compared the interactions of local anesthetic stereoisomers with biomimetic membranes consisting of chiral lipid components, the differences of which might be indicative of the drug design for reducing cardiotoxicity. Fluorescent probe-labeled biomimetic membranes were prepared with cardiolipin and cholesterol of varying compositions and different phospholipids. Local anesthetics were reacted with the membrane preparations at a cardiotoxically relevant concentration of 200 μM. The potencies to interact with biomimetic membranes and change their fluidity were compared by measuring fluorescence polarization. All local anesthetics acted on lipid bilayers to increase membrane fluidity. Chiral cardiolipin was ineffective in discriminating S(-)-enantiomers from their antipodes. On the other hand, cholesterol produced the enantiospecific membrane interactions of bupivacaine and ropivacaine with increasing its composition in membranes. In 40 mol% and more cholesterol-containing membranes, the membrane-interacting potency was S(-)-bupivacaine相似文献   

2.
Thermal perturbation techniques have been used to probe structural features of the nicotinic acetylcholine receptor (AcChR). The information obtained from differential scanning calorimetry (DSC) of AcChR membranes (M.C. Farach and M. Martinez-Carrion (1983) J. Biol. Chem. 258, 4176) in the absence and in the presence of cholinergic ligands and local anesthetics, is comparable to that obtained from a simpler technique of heat inactivation of the alpha-bungarotoxin (alpha-Bgt) binding sites on the AcChR protein in similar samples. When AcChR membranes are heated at approximately 1 degree C/min, heat inactivation of toxin binding sites has a characteristic T50 value (temperature at which 50% of the initial capacity to bind alpha-Bgt remains) of approximately 60 degrees C. When heated at a constant temperature during increasing periods of time, the rate at which heat inactivation occurs is also characteristic of the temperature chosen for the experiment. The above thermal parameters are also sensitive to perturbation of the AcChR membrane matrix by the presence of subsolubilizing concentrations of detergents. Moreover, elimination of detergents by dialysis allows us to evaluate the reversibility or irreversibility of AcChR thermal destabilization induced by detergents or other membrane perturbants. Under the experimental conditions used, structural destabilization induced by octylglucoside or cholate can be fully reversed by detergent dialysis, while that exerted by deoxycholate cannot. "Thermal gel" analysis of the aggregation of AcChR subunits induced by heat (G. Soler, J. R. Mattingly, and M. Martinez-Carrion (1984) Biochemistry 23, 4630) has also been used to assess the effects of detergent presence on the AcChR protein. When deoxycholate is used as the perturbing agent, there is a particularly effective sulfhydryl-mediated aggregation of the gamma-delta subunit group, which appears to correlate with the irreversible destabilization of alpha-Bgt binding sites induced by that detergent.  相似文献   

3.
Detergents are indispensable in the isolation of integral membrane proteins from biological membranes to study their intrinsic structural and functional properties. Solubilization involves a number of intermediary states that can be studied by a variety of physicochemical and kinetic methods; it usually starts by destabilization of the lipid component of the membranes, a process that is accompanied by a transition of detergent binding by the membrane from a noncooperative to a cooperative interaction already below the critical micellar concentration (CMC). This leads to the formation of membrane fragments of proteins and lipids with detergent-shielded edges. In the final stage of solubilization membrane proteins are present as protomers, with the membrane inserted sectors covered by detergent. We consider in detail the nature of this interaction and conclude that in general binding as a monolayer ring, rather than as a micelle, is the most probable mechanism. This mode of interaction is supported by neutron diffraction investigations on the disposition of detergent in 3-D crystals of membrane proteins. Finally, we briefly discuss the use of techniques such as analytical ultracentrifugation, size exclusion chromatography, and mass spectrometry relevant for the structural investigation of detergent solubilized membrane proteins.  相似文献   

4.
We have studied the effect of general anesthetics on the mobility of two stearic acid spin labels (5-doxyl stearic acid and 16-doxyl stearic acid) in bovine heart mitochondria and in phospholipid vesicles made from either mitochondrial lipids or commercial soybean phospholipids. The general anesthetics used include nonpolar compounds (alcohols, halothane, pentrane, diethyl ether, chloroform) and the amphipathic compound, ketamine. All anesthetics tested increase the mobility of the spin labels in phospholipid vesicles to a limited extent up to a concentration where the ESR spectra become those of free spin labels. On the other hand, anesthetics have a pronounced effect on mitochondrial membranes at concentrations as low as those known to produce general anesthesia; the effect is lower near the bilayer surface (5-doxyl stearic acid) and very strong in the bilayer core (16-doxyl stearic acid). The effects of anesthetics are mimicked by the detergent, Triton X-100. We suggest that the discrepancy between the action of anesthetics in mobilizing the spin labels in lipid vesicles and in membranes results from labilization of lipid protein interactions.  相似文献   

5.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 degrees C). Incorporation of cholesterol (30-50%) increased the microviscosity of lipid phases by 200-500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since tha latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracain and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at 25 degrees C varied as follows: polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erythrocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol: phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important functional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

6.
General anesthetics exert many of their CNS actions by binding to and modulating membrane-embedded pentameric ligand-gated ion channels (pLGICs). The structural mechanisms underlying how anesthetics modulate pLGIC function remain largely unknown. GLIC, a prokaryotic pLGIC homologue, is inhibited by general anesthetics, suggesting anesthetics stabilize a closed channel state, but in anesthetic-bound GLIC crystal structures the channel appears open. Here, using functional GLIC channels expressed in oocytes, we examined whether propofol induces structural rearrangements in the GLIC transmembrane domain (TMD). Residues in the GLIC TMD that frame intrasubunit and intersubunit water-accessible cavities were individually mutated to cysteine. We measured and compared the rates of modification of the introduced cysteines by sulfhydryl-reactive reagents in the absence and presence of propofol. Propofol slowed the rate of modification of L240C (intersubunit) and increased the rate of modification of T254C (intrasubunit), indicating that propofol binding induces structural rearrangements in these cavities that alter the local environment near these residues. Propofol acceleration of T254C modification suggests that in the resting state propofol does not bind in the TMD intrasubunit cavity as observed in the crystal structure of GLIC with bound propofol (Nury, H., Van Renterghem, C., Weng, Y., Tran, A., Baaden, M., Dufresne, V., Changeux, J. P., Sonner, J. M., Delarue, M., and Corringer, P. J. (2011) Nature 469, 428–431). In silico docking using a GLIC closed channel homology model suggests propofol binds to intersubunit sites in the TMD in the resting state. Propofol-induced motions in the intersubunit cavity were distinct from motions associated with channel activation, indicating propofol stabilizes a novel closed state.  相似文献   

7.
The disruption of a kidney cortex microsomal membrane preparation by a binary, nonionic detergent, was followed by using as markers, the changes in total protein content, and (Na+, K+)-ATPase in a supernatant fraction. Both markers responded similarly to changes in pH, microsome concentration and detergent concentration, but responded differently for time-dependent studies. The (Na+, K+)-ATPase activity was increased 2.2-fold (76.1 mumoles Pi/mg protein/h, 95% ouabain-sensitive) by a single detergent treatment and 3.5-fold (92% ouabain-sensitive) by a sequential detergent treatment. Changes in the critical micelle concentration (cmc) were observed for varying detergent and protein concentrations, which suggest interactions of monomeric detergent with the membrane. The peak of (Na+, K+)-ATPase activity occurred above the cmc which suggests the participation of micelles in releasing the enzyme from the membranes. Hill plots of the protein released as the detergent concentration was varied showed a change in the slope near the cmc indicating a four-fold increase in the binding of detergent to membranes as the detergent concentration is increased above the cmc. These results suggest that the disruption of membranes by detergent involves the binding of detergent monomers to the membrane followed by the formation of co-micelles of the detergent with segments of the membrane to complete the separation process.  相似文献   

8.
X-ray scattering and electrophysiological experiments were performed on toad sciatic nerves in the presence of local anesthetics. In vitro experiments were performed on dissected nerves superfused with Ringer's solutions containing procaine, lidocaine, tetracaine, or dibucaine. In vivo experiments were performed on nerves dissected from animals anesthesized by targeted injections of tetracaine-containing solutions. In all cases the anesthetics were found to have the same effects on the x-ray scattering spectra: the intensity ratio of the even-order to the odd-order reflections increases and the lattice parameter increases. These changes are reversible upon removal of the anesthetic. The magnitude of the structural changes varies with the duration of the superfusion and with the nature and concentration of the anesthetic molecule. A striking quantitative correlation was observed between the structural effects and the potency of the anesthetic. Electron density profiles, which hardly showed any structural alteration of the unit membrane, clearly indicated that the anesthetics have the effect of moving the pairs of membranes apart by increasing the thickness of the cytoplasmic space. Electrophysiological measurements performed on the very samples used in the x-ray scattering experiments showed that the amplitude of the compound action potential is affected earlier than the structure of myelin (as revealed by the x-ray scattering experiments), whereas conduction velocity closely follows the structural alterations.  相似文献   

9.
Rat liver mitochondrial inner and outer membranes were subjected to the solubilizing effect of the nonionic detergent Triton X-100 under various conditions. After centrifugation, the supernatants (containing the solubilized fraction) and pellets were characterized chemically and/or ultrastructurally. The detergent seems to act by inducing a phase transition from membrane lamellae to mixed protein-lipid-detergent micelles. Different electron-micro-scopy patterns are shown by the inner membranes after treatment with different amounts of surfactant, whereas the corresponding images from outer membranes vary but slightly. Selective solubilization of various components is observed, especially in the case of the inner membrane. Some membrane lipids (e.g., cardiolipin) are totally solubilized at detergent concentrations when others, such as sphyngomyelin, remain in the membrane. Other inner-membrane components (flavins, cytochromes, coenzymeQ) show different solubilization patterns. This allows the selection of conditions for optimal solubilization of a given membrane component with some degree of selectivity. The influence of Triton X-100 on various mitochondrial inner-membrane enzyme activities was studied. The detergent seems to act especially through disruption of the topology of the functional complexes, although the activity of the individual enzymes appears to be preserved. Relatively simple enzyme activities, such as ATPase, are more or less solubilized according to the detergent concentration, whereas the more complex succinate-cytochromec reductase activity practically disappears even at low Triton X-100 concentrations.  相似文献   

10.
It has recently been shown that the 30,000 m.w. Rho(D) protein is associated with the membrane skeleton of the human red cell. We have studied the effects of the membrane skeleton on the immunoreactivity of the Rho(D) antigen present in Rho(D)+ membranes. Solubilization of the membranes with the Triton X-100 detergent and centrifugation of the extracts showed that more than 90% of the immunoreactive Rho(D) antigen sedimented with the membrane skeleton structures. The skeleton-bound Rho(D) antigen could be solubilized by disruption of the skeleton in low ionic strength medium. The removal of the membrane skeleton structure before the solubilization of the membranes with detergent resulted in the inactivation of the majority of the Rho(D) antigen. The effect of the membrane skeleton on the stability of the Rho(D) antigen was additionally studied in detergent extracts prepared from native and skeleton-free membranes. The assay of the Rho(D) antigen activity in the extracts showed that the Rho(D) antigen was 100 times more sensitive to the detergent inactivation in skeleton-free membranes than in native membranes. These results indicate that the membrane skeleton is important for stabilizing the immunoreactive form of the Rho(D) protein on the red cell membrane.  相似文献   

11.
It has been previously shown that local anesthetics inhibit the total Ca2+, Mg2(+)-ATPase activity of synaptosomal plasma membranes. We have carried out kinetic studies to quantify the effects of these drugs on the different Ca2(+)-dependent and Mg2(+)-dependent ATPase activities of these membranes. As a result we have found that this inhibition is not altered by washing the membranes with EDTA or EGTA. We have also found that the Ca2(+)-dependent ATPase activity is not significantly inhibited in the concentration range of these local anesthetics and under the experimental conditions used in this study. The inhibition of the Mg2(+)-dependent ATPase activities of these membranes was found to be of a noncompetitive type with respect to the substrate ATP-Mg2+, did not significantly shift the Ca2+ dependence of the Ca2+, Mg2(+)-ATPase activity, and occurred in a concentration range of local anesthetics that does not significantly alter the order parameter (fluidity) of these membranes. Modulation of this activity by the changes of the membrane potential that are associated with the adsorption of local anesthetics on the synaptosomal plasma membrane is unlikely, on the basis of the weak effect of membrane potential changes on the Ca2+,Mg2(+)-ATPase activity. It is suggested that the local anesthetics lidocaine and dibucaine inhibit the Ca2+, Mg2(+)-ATPase of the synaptosomal plasma membrane by disruption of the lipid annulus.  相似文献   

12.
Horn JL  Janicki PK  Franks JJ 《Life sciences》1999,64(14):PL179-PL183
Plasma membrane Ca2+-ATPase (PMCA), a regulator of intracellular calcium, is inhibited by volatile anesthetics and by xenon and nitrous oxide. Response of a cellular system to anesthetics, particularly to volatile agents, raises the question of non-specific, even toxic, side effects unrelated to anesthetic action. Compounds with chemical and physical properties similar to halogenated anesthetics, but which lack anesthetic effect, have been used to address this question. We have compared the effects of halothane and flurothyl, a non-anesthetic fluorinated ether, on PMCA Ca2+ transport across isolated brain synaptic plasma membranes (SPM). Flurothyl, at concentrations predicted by the Meyer-Overton curve to range from 0.4 to 2.6 MAC (minimum alveolar concentration), had no significant on PMCA activity. In contrast halothane, 1.3 MAC, reduced Ca2+ transport 30 to 40%. These findings provide further evidence for a specific effect of inhalation anesthetics on neuronal plasma membrane Ca2+-ATPase.  相似文献   

13.
The aim of this work was to elicit correlations between physical structure and physiological functions in excitable membranes. Freshly dissected pike olfactory nerves were studied by synchrotron radiation X-ray scattering experiments and their physiological properties were tested by electrophysiological techniques. The scattering spectra contained a sharply oriented equatorial component (i.e. normal to the nerve axis), and an isotropic background. After background subtraction, the equatorial component displayed a weak and fairly sharp spectrum of oriented microtubules, and a strong and diffuse band of almost the same shape and position as the band computed for an isolated myelin membrane. We ascribed this spectrum to the axonal membranes. Under the action of temperature and of two local anesthetics, the spectrum underwent a contraction (or expansion) in the s-direction, equivalent to the structure undergoing an expansion (or contraction) in the direction perpendicular to the plane of the membrane. The main observations were: (i) with increasing temperature, membrane thickness decreased with a thermal expansion coefficient equal to -0.97(+/-0.19) 10(-3) degrees C(-1). The polarity and amplitude of this coefficient are typical of lipid-containing systems with the hydrocarbon chains in a disordered conformation. The amplitude and propagation velocity of the compound action potentials were drastically and reversibly reduced by lowering the temperature from 20 degrees C to 5 degrees C. (ii) Exposing the nerve to two local anesthetics (tetracaine and dibucaine) had the effect of decreasing membrane thickness. Action potentials were fully inhibited by these anesthetics. (iii) Upon depolarization, induced by replacing NaCl with KCl in the outer medium, approximately 25 % of the membranes were found to associate by apposing their outer faces. Electrophysiological activity was reversibly impaired by the KCl treatment. (iv) No detectable structural effect was observed upon exposing the nerves to tetrodotoxin or veratridine. Electrophysiological activity was fully impaired by tetrodotoxin and partially impaired by veratridine. The main conclusions of this work are that axonal membranes yield highly informative X-ray scattering spectra, and that these spectra are sensitive to the functional state of the nerve. These results pave the way to further studies of more direct physiological significance.  相似文献   

14.
The ethanolamine base-exchange activity of rat brain microsomes has been studied after treating the membranes with the non-ionic detergent n-octyl-beta-D-glucopyranoside. The detergent could solubilize membrane lipid and protein. The concentrations of the detergent and of membrane protein were both important for this effect. The presence of disaggregating concentrations of octylglucopyranoside in the base-exchange incubation mixture strongly inhibited the incorporation of radioactive ethanolamine into lipid; however, the removal of the detergent through dialytic procedures before assaying the base-exchange reaction restored the enzymic activity almost completely. As shown by exposing the membranes to trinitrobenzenesulfonic acid (TNBS), the phosphatidylethanolamine (PE) which was newly synthesized by base-exchange was also compartmented in the microsomal membrane. The treatment with the detergent after the base-exchange reaction abolished the compartmentation of the newly synthesized lipid. However, if microsomes were solubilized and the detergent was removed by dialysis before the assay of base-exchange, the reassembly of membranes occurred with a recovery of the compartmentation of the newly synthesized PE. The presence of Ca2+ in the dialytic medium was important for the preservation of base-exchange activity, probably affecting the reassembly of membrane components.  相似文献   

15.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 °C). Incorporation of cholesterol (30–50%) increased the microviscosity of lipid phases by 200–500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since the latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracaine and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of the anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at the 25 °C varied as follows:polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erytherocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol : phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important fuctional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

16.
After sonification of erythrocyte membranes, some changes were registered in these including a loss of their ability to structural rearrangements caused by cAMP (ESR-spectroscopy and luminescence data), an increase in cAMP binding and aggregation of intramembrane particles (freeze-fracture data). These findings suggest a non-identity of the structural organization in membranes and in their fragments. The cooperative nature of membrane structural modification at ultrasonic fragmentation is shown.  相似文献   

17.
Thylakoid membrane remodeling during state transitions in Arabidopsis   总被引:1,自引:0,他引:1  
Adaptability of oxygenic photosynthetic organisms to fluctuations in light spectral composition and intensity is conferred by state transitions, short-term regulatory processes that enable the photosynthetic apparatus to rapidly adjust to variations in light quality. In green algae and higher plants, these processes are accompanied by reversible structural rearrangements in the thylakoid membranes. We studied these structural changes in the thylakoid membranes of Arabidopsis thaliana chloroplasts using atomic force microscopy, scanning and transmission electron microscopy, and confocal imaging. Based on our results and on the recently determined three-dimensional structure of higher-plant thylakoids trapped in one of the two major light-adapted states, we propose a model for the transitions in membrane architecture. The model suggests that reorganization of the membranes involves fission and fusion events that occur at the interface between the appressed (granal) and nonappressed (stroma lamellar) domains of the thylakoid membranes. Vertical and lateral displacements of the grana layers presumably follow these localized events, eventually leading to macroscopic rearrangements of the entire membrane network.  相似文献   

18.
The present-day state of the problem of membrane structural lability is reviewed. The ways of initiation and the nature of structural rearrangements, the mechanisms of generalization of local structural perturbations in membranes and the effects of rearrangements on the functional activity of organoids and cells are discussed.  相似文献   

19.
In this communication we report the effects of general anesthetics on the mobility and order of spin labeled stearic acid derivatives in synaptic membranes and in bilayers formed from the lipids extracted therefrom. The anesthetics studied abolish the immobilization induced by synaptic membrane proteins on the membrane lipids : this effect, observed particularly in the bilayer core, is interpreted as a labilization of lipid-protein interactions induced by anesthetics.  相似文献   

20.
Functional reconstitution of influenza virus envelopes.   总被引:6,自引:0,他引:6       下载免费PDF全文
We have examined several procedures for the reconstitution of influenza virus envelopes, based on detergent removal from solubilized viral membranes. With octylglucoside, no functionally active virosomes are formed, irrespective of the rate of detergent removal: in the final preparation the viral spike proteins appear predominantly as rosettes. Protein incorporation in reconstituted vesicles is improved when a method based on reverse-phase evaporation of octylglucoside-solubilized viral membranes in an ether/water system is employed. However, the resulting vesicles do not fuse with biological membranes, but exhibit only a non-physiological fusion reaction with negatively charged liposomes. Functional reconstitution of viral envelopes is achieved after solubilization with octaethyleneglycol mono(n-dodecyl)ether (C12E8), and subsequent detergent removal with Bio-Beads SM-2. The spike protein molecules are quantitatively incorporated in a single population of virosomes of uniform buoyant density and appear on both sides of the membrane. The virosomes display hemagglutination activity and a strictly pH-dependent hemolytic activity. The virosomes fuse with erythrocyte ghosts, as revealed by a fluorescence resonance energy transfer assay. The rate and the pH dependence of fusion are essentially the same as those of the intact virus. The virosomes also fuse with cultured cells, either at the level of the endosomal membrane or directly with the cellular plasma membrane upon a brief exposure to low pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号