首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Group A Streptococcus (GAS) produces several immunopotent proteins such as the immunoglobulin-binding protein 35 (Sib35) family, known to be an immunoglobulin G-degrading enzyme of GAS and a CD16-binding protein of GAS, Mac-1-like protein/IdeS. In this study, Sib35 activated mouse B cells and induced the proliferation of B lymphocytes, while it also bound directly to B cells, which enhanced the expression of MHC class II and B7-2. Furthermore, Sib35 induced the differentiation of B cells to immunoglobulin-producing plasma cells and B cell line proliferation. These results suggest that Sib35 functions as a streptococcal mitogen of mouse B cells.  相似文献   

2.
Cluster 2b streptokinase (SK2b), secreted by invasive skin-trophic strains of Streptococcus pyogenes (GAS), is a human plasminogen (hPg) activator that optimally functions when human plasma hPg is bound, via its kringle-2 domain, to cognizant bacterial cells through the a1a2 domain of the major cellular hPg receptor, Plasminogen-binding group A streptococcal M-like protein (PAM). Another class of streptokinases (SK1), secreted primarily by GAS strains that possess affinity for pharyngeal infections, does not require PAM-bound hPg for optimal activity. We find herein that replacement of the central β-domain of SK2b with the same module from SK1 reduces the dependency of SK2b on PAM, and the converse is true when the β-domain of SK1 is replaced with this same region of SK2b. These data suggest that simple evolutionary shuttling of protein domains in GAS can be employed by GAS to rapidly generate strains that differ in tissue tropism and invasive capability and allow the bacteria to survive different challenges by the host.  相似文献   

3.
Streptococcus pyogenes (GAS) causes about 90% of streptococcal human infections while group C (GCS) and G (GGS) streptococci can be pathogenic for different mammalians. Especially the human pathogenic GCS and GGS, Streptococcus dysgalactiae, subsp. equisimilis, account for 5-8% of the human streptococcal diseases like wound infections, otitis media, purulent pharyngitis and also streptococcal toxic shock syndrome. A defined superantigen so far was not identified in GCS and GGS strains. In the present investigation we screened DNA of GCS and GGS human isolates for the presence of genes for streptococcal pyrogenic exotoxins (spe) by hybridisation with probes that stand for the GAS genes speA, speC, speZ (smeZ), speH, speG, speI, speJ and ssa. In many GCS and GGS strains we found positive reactions with the probes speG, speJ and ssa, but not with the probes for the remaining genes under investigation. PCR amplification with subsequent sequence analysis of the PCR fragments revealed only the presence of the gene speG in GCS and GGS strains, while no DNA fragments specific for speJ and ssa could be amplified. Additionally, the upstream and downstream regions flanking speG in GGS strain 39072 were sequenced. Remarkable differences were found in the neighbourhood of speG between GAS and GGS sequences. Downstream of speG we identified in strain GGS 39072 two new open reading frames encoding proteins with no similarity to protein sequences accessible in the databases so far. In the compared GAS strains SF370 and MGAS8232, this segment, apart from some small fragments, had been deleted. Our analysis suggests that a gene transfer from GGS to GAS has preceded following deletion of the two genes orf1 and orf2 in GAS.  相似文献   

4.
In addition to beta-haemolytic streptococci belonging to Lancefield group A (Streptococcus pyogenes, GAS), human isolates of group C (GCS) and group G (GGS) streptococci (S. dysgalactiae subsp. equisimilis) have been implicated as causative agents in outbreaks of purulent pharyngitis, of wound infections and recently also of streptococcal toxic shock-like syndrome. Very little is known about the organisation of the genomic region in which the emm gene of GCS and GGS is located. We have investigated the genome sequences flanking the emm gene in GCS by sequencing neighbouring fragments obtained by inverse PCR. Our sequence data for GCS strains 25287 and H46A revealed two types of arrangement in the emm region, which differ significantly from the known types of mga regulon in GAS. We named this segment of the genome mgrC (for multigene regulon-like segment in group C streptococci). In strains belonging to the first mgrC type (prototype strain 25287) the emm gene is flanked up-stream by mgc, a gene that is 61% identical to the mga gene of GAS. A phylogenetic analysis of the deduced protein sequences showed that Mgc is related to Mga proteins of various types of GAS but forms a distinct cluster. Downstream of emm, the mgrC sequence region is bordered by rel. This gene encodes a protein that functions in the synthesis and degradation of guanosine 3',5' bipyrophosphate (ppGpp) during the stringent regulatory response to amino acid deprivation. In the second mgrC type (prototype strain H46A), the genes mgc and emm are arranged as in type 1. But an additional ORF (orf) is inserted in opposite orientation between emm and rel. This orf shows sequence homology to cpdB, which is present in various microorganisms and encodes 2',3' cyclo-nucleotide 2'-phosphodiesterase. PCR analysis showed that these two mgrC arrangements also exist in GGS. Our sequence and PCR data further showed that both types of mgrC region in GCS and GGS are linked via rel to the streptokinase region characterised recently in strain H46A. A gene encoding C5a peptidase, which is present at the 3' end of the mga regulon in GAS, was not found in the mgrC region identified in the GCS and GGS strains investigated here.  相似文献   

5.
Streptococcus pyogenes (or group A streptococcus [GAS]) is a major human pathogen causing infections, such as tonsillitis, erysipelas, and sepsis. Several GAS strains bind host complement regulator factor H (CFH) via its domain 7 and, thereby, evade complement attack and C3b-mediated opsonophagocytosis. Importance of CFH binding for survival of GAS has been poorly studied because removal of CFH from plasma or blood causes vigorous complement activation, and specific inhibitors of the interaction have not been available. In this study, we found that activation of human complement by different GAS strains (n = 38) correlated negatively with binding of CFH via its domains 5-7. The importance of acquisition of host CFH for survival of GAS in vitro was studied next by blocking the binding with recombinant CFH5-7 lacking the regulatory domains 1-4. Using this fragment in full human blood resulted in death or radically reduced multiplication of all of the studied CFH-binding GAS strains. To study the importance of CFH binding in vivo (i.e., for pathogenesis of streptococcal infections), we used our recent finding that GAS binding to CFH is diminished in vitro by polymorphism 402H, which is also associated with age-related macular degeneration. We showed that allele 402H is suggested to be associated with protection from erysipelas (n = 278) and streptococcal tonsillitis (n = 209) compared with controls (n = 455) (p < 0.05). Taken together, the bacterial in vitro survival data and human genetic association revealed that binding of CFH is important for pathogenesis of GAS infections and suggested that inhibition of CFH binding can be a novel therapeutic approach in GAS infections.  相似文献   

6.
The important human pathogen Streptococcus pyogenes (group A streptococcus GAS), requires several surface proteins to interact with its human host. Many of these are covalently linked by a sortase enzyme to the cell wall via a C-terminal LPXTG motif. This motif is followed by a hydrophobic region and charged C terminus, which are thought to retard the protein in the cell membrane to facilitate recognition by the membrane-localized sortase. Previously, we identified two sortase enzymes in GAS. SrtA is found in all GAS strains and anchors most proteins containing LPXTG, while SrtB is present only in some strains and anchors a subset of LPXTG-containing proteins. We now report the presence of a third sortase in most strains of GAS, SrtC. We show that SrtC mediates attachment of a protein with a QVPTGV motif preceding a hydrophobic region and charged tail. We also demonstrate that the QVPTGV sequence is a substrate for anchoring of this protein by SrtC. Furthermore, replacing this motif with LPSTGE, found in the SrtA-anchored M protein of GAS, leads to SrtA-dependent secretion of the protein but does not lead to its anchoring by SrtA. We conclude that srtC encodes a novel sortase that anchors a protein containing a QVPTGV motif to the surface of GAS.  相似文献   

7.
Streptococcal surface dehydrogenase (SDH) is a multifunctional, anchorless protein present on the surface of group A Streptococcus (GAS). It plays a regulatory role in GAS-mediated intracellular signaling events in human pharyngeal cells. Using ligand-binding assays, we have identified an approximately 55 kDa protein as an SDH-specific receptor protein on the surface of Detroit human pharyngeal cells. LC-MS/MS analyses identified this SDH-binding pharyngeal cell-surface-exposed membrane-bound protein as uPAR (urokinase plasminogen activator receptor)/CD87. Ligand-binding assays also revealed that only the N-terminal domain (D1) of uPAR bound to SDH. uPAR-D1 more specifically bound to the C-terminal alpha-helix and two immediate flanking regions of the S-loop of the SDH molecule. Site-directed mutagenesis in GAS resulting in SDH with altered C-terminal ends, and the removal of uPAR from pharyngeal cells by phosphatidylinositol-phopsholipase C treatment decreased GAS ability to adhere to pharyngeal cells. When compared to uninfected Detroit pharyngeal cells, GAS-infected pharyngeal cells showed a transient but a significant increase in the expression of uPAR-specific mRNA, and a prolonged recycling process of uPAR on the cell surface. Together, these results indicate that the specific streptococcal surface protein-pharyngeal cell receptor interaction mediated by SDH and uPAR is modulated during GAS infection of human pharyngeal cells. This interaction significantly contributes to bacterial adherence and thus may play a significant role in GAS pathogenesis by regulating intracellular signaling events in pharyngeal cells.  相似文献   

8.
The M1T1 strain remains the most frequently isolated strain from group A streptococcal (GAS) infection cases worldwide. We previously reported that M1T1 differs from the fully sequenced M1 SF370 strain. To better understand the reason for the persistence and increased virulence of M1T1, we analysed its secreted proteome and identified two virulence proteins that are not present in the sequenced M1 SF370 strain: streptococcal pyrogenic exotoxin A (SpeA) and a streptodornase D (SdaD) homologue. In the present study, we determined the nucleotide sequence of the M1T1 streptodornase and found that its deduced amino acid sequence is highly similar to other streptococcal streptodornases, and is most closely related to the SdaD of GAS strain M49. M1T1 Sda shares two highly conserved domains with several DNases and putative DNases in streptococci; however, it possesses a unique C-terminal amino acid sequence. Thus, we named the protein Sda1, and we detected the presence of the sda1 gene in 16 M1T1 clinical isolates. The cloned and expressed Sda1 degrades both streptococcal and mammalian DNA at physiological pH. Amino acid similarity analyses of known GAS deoxyribonucleases suggest that Sda1 may be a chimeric protein created through recombination events. Moreover, a natural mutation that resulted in longer Sda1 and SdaD as compared to other GAS DNases was found to confer increased activity on the protein. Analysis of the sequences flanking sda1 determined that it is carried by a prophage or a prophage-like element inserted in the tRNA-Ser gene of M1T1 GAS. Ongoing studies in our laboratory aim to determine the contribution of Sda1 to the virulence of this globally disseminated M1T1 strain.  相似文献   

9.
The interaction of Streptococcus pyogenes (group A streptococcus [GAS]) with its human host requires several surface proteins. In this study, we isolated mutations in a gene required for the surface localization of protein F by transposon mutagenesis of the M6 strain JRS4. This gene (srtA) encodes a protein homologous to Staphylococcus aureus sortase, which covalently links proteins containing an LPXTG motif to the cell wall. The GAS srtA mutant was defective in anchoring the LPXTG-containing proteins M6, protein F, ScpA, and GRAB to the cell surface. This phenotype was complemented when a wild-type srtA gene was provided in trans. The surface localization of T6, however, was unaffected by the srtA mutation. The M1 genome sequence contains a second open reading frame with a motif characteristic of sortase proteins. Inactivation of this gene (designated srtB) in strain JRS4 affected the surface localization of T6 but not M6, protein F, ScpA, or GRAB. This phenotype was complemented by srtB in trans. An srtA probe hybridized with DNA from all GAS strains tested (M types 1, 3, 4, 5, 6, 18, 22, and 50 and nontypeable strain 64/14) and from streptococcal groups C and G, while srtB hybridized with DNA from only a few GAS strains. We conclude that srtA and srtB encode sortase enzymes required for anchoring different subsets of proteins to the cell wall. It seems likely that the multiple sortase homologs in the genomes of other gram-positive bacteria have a similar substrate-specific role.  相似文献   

10.
Many strains of Streptococcus pyogenes are known to express a receptor for IgA. The complete nucleotide sequence of the gene for such a receptor, protein Arp4, has been determined. The deduced amino acid sequence of 386 residues includes a signal sequence of 41 amino acids and a putative membrane anchor region, both of which are homologous to similar regions in other streptococcal surface proteins. The processed form of the IgA receptor has a length of 345 amino acids and a calculated molecular weight of 39544. The N-terminal sequence of the processed form is different from that previously found for a similar IgA receptor isolated from a S. pyogenes strain of type M60. The sequence of protein Arp4 shows extensive homology to the C-terminal half of streptococcal M proteins, but not to the streptococcal IgG receptor protein G or staphlyococcal protein A. Apart from the membrane anchor, this homology includes a sequence of 119 amino acid residues containing three repeated units and a 54-residue sequence without repeats. The protein expressed in Escherichia coli is found in the periplasmic space, in which it constitutes the major protein. Protein Arp4 is the first example of a surface protein that has both immunoglobulin-binding capacity and structural features characteristic of M proteins.  相似文献   

11.
Streptococcus pyogenes is an important pathogen that causes pharyngitis, scarlet fever, rheumatic fever, and streptococcal toxic shock syndrome. To survive within its host, S. pyogenes has developed several immune evasion mechanisms. Here, we identified a novel gene encoding a 66-kDa protein with many leucine zipper motifs, that we call streptococcal leucine zipper protein (Lzp). Lzp was expressed on the bacterial cell surface, and some was detected in the culture medium. Lzp was expressed by all the S. pyogenes strains we tested, but not by group B streptococcal strains. Western blotting and Biacore assay demonstrated that recombinant Lzp bound to human IgA, IgG, IgM, and Lzp. In addition, native-PAGE analysis suggested that the Lzp molecule formed dimer and trimer conformations. Thus, Lzp is a novel immunoglobulin-binding protein that may play a role in helping S. pyogenes escape detection by the host immune system.  相似文献   

12.

Background  

The genome of serotype M28 group A Streptococcus (GAS) strain MGAS6180 contains a novel genetic element named Region of Difference 2 (RD2) that encodes seven putative secreted extracellular proteins. RD2 is present in all serotype M28 strains and strains of several other GAS serotypes associated with female urogenital infections. We show here that the GAS RD2 element is present in strain MGAS6180 both as an integrative chromosomal form and a circular extrachromosomal element. RD2-like regions were identified in publicly available genome sequences of strains representing three of the five major group B streptococcal serotypes causing human disease. Ten RD2-encoded proteins have significant similarity to proteins involved in conjugative transfer of Streptococcus thermophilus integrative chromosomal elements (ICEs).  相似文献   

13.
Group A streptococci (GAS) display receptors for the human zymogen plasminogen on the cell surface, one of which is the plasminogen-binding group A streptococcal M protein (PAM). Characterization of PAM genes from 12 GAS isolates showed significant variation within the plasminogen-binding repeat motifs (a1/a2) of this protein. To determine the impact of sequence variation on protein function, recombinant proteins representing five naturally occurring variants of PAM, together with a recombinant M1 protein, were expressed and purified. Equilibrium dissociation constants for the interaction of PAM variants with biotinylated Glu-plasminogen ranged from 1.58 to 4.99 nm. Effective concentrations of prototype PAM required for 50% inhibition of plasminogen binding to immobilized PAM variants ranged from 0.68 to 22.06 nm. These results suggest that although variation in the a1/a2 region of the PAM protein does affect the comparative affinity of PAM variants, the functional capacity to bind plasminogen is conserved. Additionally, a potential role for the a1 region of PAM in eliciting a protective immune response was investigated by using a mouse model for GAS infection. The a1 region of PAM was found to protect immunized mice challenged with a PAM-positive GAS strain. These data suggest a link between selective immune pressure against the plasminogen-binding repeats and the functional conservation of the binding domain in PAM variants.  相似文献   

14.
The origin of DNA replication (oriC) of Streptococcus pyogenes, group A streptococci (GAS), has been cloned in Escherichia coli and reintroduced by transformation into other GAS strains. Transformation frequencies into GAS strains with oriC-carrying plasmids occurred with unusually high frequencies. However, the oriC-containing plasmids in the new recipients were found to be unstable and had a tendency to integrate into the chromosome, even when a recA GAS strain was used as a recipient. The GAS oriC was able to direct the replication of autonomous plasmids in group B streptococcal recipients. The chromosomal organization of the oriC region of GAS relative to other bacterial species appears to be similar to oriC of Bacillus subtilis and other Gram-positive microorganisms.  相似文献   

15.
Four Streptococcus pneumoniae genes, phtA, phtB, phtD, and phtE, as well as the slr gene of group A streptococci (GAS), encode proteins with a histidine triad motif (HxxHxH). Pht proteins function as protective antigens against S. pneumoniae infection. A search of the GAS genome database identified a novel protein, HtpA, possessing five histidine triad motifs. The htpA gene was shown to encode a 92.5-kDa protein located downstream of the fbaA and lbp genes, while Western blot analyses revealed that HtpA protein was expressed on the cell surfaces of all group A, B, C, and G streptococcal isolates tested. Immunization of mice with rHtpA induced antigen-specific antibody production and was effective after a single immunization, with antibody titers remaining constant for at least 84days. In addition, HtpA-immunized mice survived after challenge with GAS strains isolated from patients with streptococcal toxic shock syndrome for significantly longer periods than sham-immunized mice. In that experiment, the HtpA-specific antibody was effectively induced by a single immunization and the specific antibody titer remained constant for at least 84days. These results indicate that the novel histidine triad protein HtpA is a candidate vaccine for GAS infection.  相似文献   

16.
Streptococcus dysgalactiae subsp. equisimilis strains (group G streptococcus [GGS]) are largely defined as commensal organisms, which are closely related to the well-defined human pathogen, the group A streptococcus (GAS). While lateral gene transfers are emerging as a common theme in these species, little is known about the mechanisms and role of these transfers and their effect on the population structure of streptococci in nature. It is now becoming evident that bacteriophages are major contributors to the genotypic diversity of GAS and, consequently, are pivotal to the GAS strain structure. Furthermore, bacteriophages are strongly associated with altering the pathogenic potential of GAS. In contrast, little is know about phages from GGS and their role in the population dynamics of GGS. In this study we report the first complete genome sequence of a GGS phage, Phi3396. Exhibiting high homology to the GAS phage Phi315.1, the chimeric nature of Phi3396 is unraveled to reveal evidence of extensive ongoing genetic diversity and dissemination of streptococcal phages in nature. Furthermore, we expand on our recent findings to identify inducible Phi3396 homologues in GAS from a region of endemicity for GAS and GGS infection. Together, these findings provide new insights into not only the population structure of GGS but also the overall population structure of the streptococcal genus and the emergence of pathogenic variants.  相似文献   

17.
Group A streptococcus (GAS) is the most common pathogen causing bacterial pharyngitis. We isolated streptococcal strains from tonsils removed from patients with tonsillar disease (n=202) and studied their ability to bind the complement regulators factor H (FH) and C4b binding protein (C4BP) using 125 I-labeled proteins. Blood isolates of GAS (n=10) were obtained from patients with bacteraemia. Streptococci were isolated from 21% of the tonsillitis patients. The emm and T types of the GAS strains were determined. Of the 26 GAS strains studied, only six could bind FH and/or C4BP above the threshold levels. The fraction of the offered radioactive protein bound ranged between 6-12% for FH and 19-56% for C4BP. The clinical course of the tonsillar disease was not related to the binding of FH or C4BP by GAS. The binding strains were mostly of the T4M4 or T28M28 type. From the invasive strains (n=10), three bound FH (binding level: 8-11%) and two C4BP (36-39%). The binding correlated only partially to M-protein (emm) type suggesting that the binding was not exclusively due to M-protein. The results indicate that complement regulator binding by GAS is only partially related to pathogenicity and not a universal property of all group A streptococci.  相似文献   

18.

Background  

Most group A streptococcal (GAS) vaccine strategies have focused on the surface M protein, a major virulence factor of GAS. The amino-terminus of the M protein elicits antibodies, that are both opsonic and protective, but which are type specific. J14, a chimeric peptide that contains 14 amino acids from the M protein conserved C-region at the carboxy-terminus, offers the possibility of a vaccine which will elicit protective opsonic antibodies against multiple different GAS strains. In this study, we searched for J14 and J14-like sequences and the number of their repeats in the C-region of the M protein from GAS strains isolated from the Northern Thai population. Then, we examined the bactericidal activity of J14, J14.1, J14-R1 and J14-R2 antisera against multiple Thai GAS strains.  相似文献   

19.
The molecular mechanisms underlying niche adaptation in bacteria are not fully understood. Primary infection by the pathogen group A streptococcus (GAS) takes place at either the throat or the skin of its human host, and GAS strains differ in tissue site preference. Many skin-tropic strains bind host plasminogen via the plasminogen-binding group A streptococcal M protein (PAM) present on the cell surface; inactivation of genes encoding either PAM or streptokinase (a plasminogen activator) leads to loss of virulence at the skin. Unlike PAM, which is present in only a subset of GAS strains, the gene encoding streptokinase (ska) is present in all GAS isolates. In this study, the evolution of the virulence genes known to be involved in skin infection was examined. Most genetic diversity within ska genes was localized to a region encoding the plasminogen-docking domain (beta-domain). The gene encoding PAM displayed strong linkage disequilibrium (P < 0.01) with a distinct phylogenetic cluster of the ska beta-domain-encoding region. Yet, ska alleles of distant taxa showed a history of intragenic recombination, and high intrinsic levels of recombination were found among GAS strains having different tissue tropisms. The data suggest that tissue-specific adaptations arise from epistatic coselection of bacterial virulence genes. Additional analysis of ska genes showed that approximately 4% of the codons underwent strong diversifying selection. Horizontal acquisition of one ska lineage from a commensal Streptococcus donor species was also evident. Together, the data suggest that new phenotypes can be acquired through interspecies recombination between orthologous genes, while constrained functions can be preserved; in this way, orthologous genes may provide a rich and ready source for new phenotypes and thereby play a facilitating role in the emergence of new niche adaptations in bacteria.  相似文献   

20.
Molecular evolution of a multigene family in group A streptococci   总被引:15,自引:0,他引:15  
The emm genes are members of a gene family in group A streptococci (GAS) that encode for antiphagocytic cell-surface proteins and/or immunoglobulin-binding proteins. Previously sequenced genes in this family have been named "emm," "fcrA," "enn," "arp," "protH," and "mrp"; herein they will be referred to as the "emm gene family." The genes in the emm family are located in a cluster occupying 3-6 kb between the genes mry and scpA on the chromosome of Streptococcus pyogenes. Most GAS strains contain one to three tandemly arranged copies of emm-family genes in the cluster, but the alleles within the cluster vary among different strains. Phylogenetic analysis of the conserved sequences at the 3' end of these genes differentiates all known members of this family into four evolutionarily distinct emm subfamilies. As a starting point to analyze how the different subfamilies are related evolutionarily, the structure of the emm chromosomal region was mapped in a number of diverse GAS strains by using subfamily-specific primers in the polymerase chain reaction. Nine distinct chromosomal patterns of the genes in the emm gene cluster were found. These nine chromosomal patterns support a model for the evolution of the emm gene family in which gene duplication followed by sequence divergence resulted in the generation of four major-gene subfamilies in this locus.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号