首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aoki J  Inoue A  Makide K  Saiki N  Arai H 《Biochimie》2007,89(2):197-204
Phospholipase A1 (PLA1) is an enzyme that hydrolyzes phospholipids and produces 2-acyl-lysophospholipids and fatty acids and is conserved in a wide range of organisms. Mammals have several enzymes that exhibit PLA1 activity in vitro. The extracellular PLA1s include phosphatidylserine (PS)-specific PLA1 (PS-PLA1), membrane-associated phosphatidic acid (PA)-selective PLA1s (mPA-PLA1alpha and mPA-PLA1beta), hepatic lipase (HL), endothelial lipase (EL) and pancreatic lipase-related protein 2 (PLRP2), all of which belong to the pancreatic lipase gene family. The former three PLA1s differ from other members in their substrate specificities, structural features and gene organizations, and form a subfamily in the pancreatic lipase gene family. PS-PLA1, mPA-PLA1alpha and mPA-PLA1beta exhibit only PLA1 activity, while HL, EL and PLRP2 show triacylglycerol-hydrolyzing activity in addition to PLA1 activity. The tertiary structures of lipases have two surface loops, the lid and the beta9 loop. The lid and the beta9 loop cover the active site in its closed conformation. An alignment of amino acid sequences of the pancreatic lipase gene family members revealed two molecular characteristics of PLA1s in the two surface loops. First, lipase members exhibiting PLA1 activity (PS-PLA1, mPA-PLA1alpha and mPA-PLA1beta, EL, guinea pig PLRP2 and PLA1 from hornet venom (DolmI)) have short lids. Second, PS-PLA1, mPA-PLA1alpha, mPA-PLA1beta and DolmI, which exhibit only PLA(1) activity, have short beta9 loops. Thus, the two surface loops appear to be involved in the ligand recognition. PS-PLA1 and mPA-PLA1s specifically hydrolyze PS and PA, respectively, producing their corresponding lysophospholipids. Lysophosphatidylserine and lysophosphatidic acid have been defined as lipid mediators with multiple biological functions. Thus, these PLA1s have a role in the production of these lysophospholipid mediators.  相似文献   

2.
Structure of the human lipoprotein lipase gene   总被引:41,自引:0,他引:41  
S S Deeb  R L Peng 《Biochemistry》1989,28(10):4131-4135
  相似文献   

3.
4.
Structure of the human hepatic triglyceride lipase gene   总被引:7,自引:0,他引:7  
S J Cai  D M Wong  S H Chen  L Chan 《Biochemistry》1989,28(23):8966-8971
The structure of the human hepatic triglyceride lipase gene was determined from multiple cosmid clones. All the exons, exon-intron junctions, and 845 bp of the 5' and 254 bp of the 3' flanking DNA were sequenced. Comparison of the exon sequences to three previously published cDNA sequences revealed differences in the sequence of the codons for residues 133, 193, 202, and 234 that may represent sequence polymorphisms. By primer extension, hepatic lipase mRNA initiates at an adenine 77 bases upstream of the translation initiation site. The hepatic lipase gene spans over 60 kb containing 9 exons and 8 introns, the latter being all located within the region encoding the mature protein. The exons are all of average size (118-234 bp). Exon 1 encodes the signal peptide, exon 4, a region that binds to the lipoprotein substrate, and exon 5, an evolutionarily highly conserved region of potential catalytic function, and exons 6 and 9 encode sequences rich in basic amino acids thought to be important in anchoring the enzyme to the endothelial surface by interacting with acidic domains of the surface glycosaminoglycans. The human lipoprotein lipase gene has been recently reported to have an identical exon-intron organization containing the analogous structural domains [Deeb & Peng (1989) Biochemistry 28, 4131-4135]. Our observations strongly support the common evolutionary origin of these two lipolytic enzymes.  相似文献   

5.
6.
Structure of the rat pancreatic cholesterol esterase gene   总被引:1,自引:0,他引:1  
R N Fontaine  C P Carter  D Y Hui 《Biochemistry》1991,30(28):7008-7014
  相似文献   

7.
Structure and polymorphic map of human lipoprotein lipase gene   总被引:18,自引:0,他引:18  
Lipoprotein lipase (LPL) catalyzes the key step for the removal of triacylglycerol-rich lipoproteins from the circulation. In this paper, we report the cloning and structure of the normal human LPL gene, which was isolated in three overlapping lambda phage clones that span about 35 kilo bases (kb) of the genetic locus. The peptide coding region of the gene is approx. 23 kb in length and contains nine exons with intron sizes ranging from 0.7 to 8.7 kb. The entire 3' untranslated region is in the tenth exon. Specific sequences in this region support the hypothesis that two mRNA species found for human LPL are generated by differential utilization of polyadenylation signals. The first exon occurs in the 5' untranslated region and the region coding for the signal peptide. The second exon includes the protein domain coding for the N-linked glycosylation site that is required for the expression of enzyme activity. The fourth exon contains the region that was proposed as a lipid binding domain, the sixth for one putative heparin binding domain, and the eighth codes for a domain containing another N-linked glycosylation site. These results suggest that the unique structural and functional domains are confined to specific exons. The PvuII polymorphic site was located within the intron between exon 6 and 7 and the HindIII polymorphic site to the 3' flanking region. The location of these polymorphic sites suggests that the PvuII restriction fragment length polymorphism (RFLP) associated with lipase deficiency in a few Japanese kindred may be a linkage marker for a functional defect of LPL, while the HindIII RFLP associated with hypertriglyceridemia may be important for gene regulation of LPL.  相似文献   

8.
The gene for human pancreatic cholesterol esterase consists of 11 exons and 10 introns and is 9.2 kb in length. The last and longest exon (841 nucleotides) is unique to the human gene. Functional amino acids are encoded on separate exons. The leader sequence is encoded by a single exon which carries two additional N-terminal amino acids of the mature functional protein. A positive TATA element is identified 43 nucleotides from the start codon. Pulse-field gel electrophoresis and hybridization with various cDNA probes and direct sequence data revealed the existence of a CEase-like gene. Partial sequence analysis of this gene from a human cosmid library and human genomic DNA showed a premature stop signal in exon 10, shortly after the codon for the active-site histidine. Both the functional gene and the CEase-like gene have a polyadenylation signal in the 3'-untranslated region. Thus, the complex gene structure for this intestinally active enzyme may provide in part a potential molecular explanation for the well-known heterogeneity of the intestinal absorption of cholesterol.  相似文献   

9.
This study explored the potential of using the gene therapy approach, based on adenovirus-mediated expression of pancreatic lipase in the hepatobiliary tract, to increase lipid digestion in the intestinal lumen and promote lipid absorption through the gastrointestinal tract. Recombinant adenovirus containing the human pancreatic lipase cDNA (AdPL) was shown to transduce and mediate pancreatic lipase biosynthesis in rat IEC-6 epithelial cells in vitro. Retrograde infusion of recombinant adenovirus (3 x 10(8) plaque-forming units) containing the bacterial LacZ gene (AdLacZ) into the bile duct of rats resulted in positive X-gal reaction products in the periportal liver cells 7 days after AdLacZ infusion. A high level of human pancreatic lipase was detected in bile after retrograde bile duct infusion of rats with AdPL but not in the bile of animals infused with AdLacZ. Triglyceride hydrolytic activity in the bile of AdPL-infused rats was equivalent to that present in pancreatic juice. In contrast, serum obtained from these animals did not contain any detectable pancreatic lipase activity. These results suggest that ectopic expression of pancreatic enzymes in the hepatobiliary tract may be an alternative therapeutic strategy for treating fat malabsorption due to pancreatic insufficiency.  相似文献   

10.
A procedure for the isolation of lipase (glycerolester hydrolase, EC 3.1.1.3) from rat pancreas is described. The purification scheme includes homogenization of the pancreas, centrifugation at 3,000 rpm, centrifugation at 40,000 rpm, DEAE-cellulose chromatography, precipitation of amylase as the amylase-glycogen complex, gel filtration of the amylase-free proteins on Sephadex G-100, and chromatography on carboxymethyl-Sephadex C-50. The enzyme showed only one band on polyacrylamide gel electrophoresis and had a specific activity of 5330 +/- 80 units/mg of protein.  相似文献   

11.
Spin-label method was applied to the studies of conformation properties of pancreatic lipase. Spin-labelled derivatives of the enzyme in SH- and NH2-groups were obtained. ESR-spectra of both samples belong to the immobilized type, in the first case the ESR-spectrum corresponding to strong immobilization of the spin-label, and in the second--to the average one. In both cases the rotation correlation time of the enzyme molecule was measured. The time proved the same independent of the site of the label attachment; it corresponded to the rotation of macromolecule with molecular weight 50000. This fact points to the absence of both intramolecular flexibility of the enzyme molecule and of the association of lipase molecules in solution. It has been shown that introduction of substrates and inhibitors of the enzyme and the interface as well, induces no changes in the ESR spectra, which points to the absence of local conformation changes of protein near the spin-labels introduced.  相似文献   

12.
Sayari A  Mejdoub H  Gargouri Y 《Biochimie》2000,82(2):153-159
Turkey pancreatic lipase (TPL) was purified from delipidated pancreases. Pure TPL (glycerol ester hydrolase, EC 3.1.1.3) was obtained after ammonium sulfate fractionation, Sephacryl S-200 gel filtration, anion exchange chromatography (DEAE-Sepharose) and size exclusion column using high performance liquid chromatography system (HPLC). The pure lipase, which is not a glycoprotein, was presented as a monomer having a molecular mass of about 45 kDa. The lipase activity was maximal at pH 8.5 and 37 degrees C. TPL hydrolyses the long chains triacylglycerols more efficiently than the short ones. A specific activity of 4300 U/mg was measured on triolein as substrate at 37 degrees C and at pH 8.5 in the presence of colipase and 4 mM NaTDC. This enzyme presents the interfacial activation when using tripropionin as substrate. TPL was inactivated when the enzyme was incubated at 65 degrees C or at pH less than 5. Natural detergent (NaTDC), synthetic detergent (Tween-20) or amphipatic protein (beta-lactoglobulin A) act as potent inhibitors of TPL activity. To restore the lipase activity inhibited by NaTDC, colipase should be added to the hydrolysis system. When lipase is inhibited by synthetic detergent or protein, simultaneous addition of colipase and NaTDC was required to restore the TPL activity. The first 22 N-terminal amino acid residues were sequenced. This sequence was similar to those of mammal's pancreatic lipases. The biochemical properties of pancreatic lipase isolated from bird are similar to those of mammals.  相似文献   

13.
14.
On the positional specificity of pancreatic lipase   总被引:2,自引:0,他引:2  
  相似文献   

15.
Substrate specificity of pancreatic lipase   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
18.
The glycan primary structure of the main glycopeptide fraction obtained by pronase and carboxypeptidase A digestions of porcine pancreatic lipase has been investigated by 500-MHz 1H-NMR spectroscopy and methylation analysis. The results demonstrate that the glycopeptide fraction was a mixture containing the following structures: (formula; see text)  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号