首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
The beta-tubulin genes of two Strongyloides species   总被引:1,自引:0,他引:1  
The World Health Organization is sponsoring major treatment programs with the aim of controlling helminth infection throughout the tropical world. Prominent among the anthelmintics recommended for use in these programs are drugs in the benzimidazole (BZ) class. Resistance to these drugs has been associated with polymorphisms in the beta-tubulin gene. We have cloned and sequenced the beta-tubulin genes of Strongyloides stercoralis and Strongyloides ratti and have proceeded to develop a protocol for genotyping single worms for polymorphisms in beta-tubulin. Our findings indicate that S. ratti has a single beta-tubulin gene, making DNA sequence analysis of a single larva PCR product a feasible means of studying BZ resistance in these species. Our genotyping test allows the identification of polymorphisms at codons 167, 198, and 200 in the Strongyloides beta-tubulin gene, thus enabling survey for BZ resistant genotypes.  相似文献   

2.
This study represents the first beta-tubulin sequence from a trematode parasite, namely, the liver fluke, Fasciola hepatica. PCR of genomic DNA showed that at least one beta-tubulin gene from F. hepatica contains no introns. A number of amino acids in the primary sequence of fluke tubulin are different from those described previously in various nematode species and the cestode, Echinococcus multilocularis. beta-Tubulin is an important target for benzimidazole anthelmintics, although (with the exception of triclabendazole) they show limited activity against F. hepatica. The amino acid differences in fluke beta-tubulin are discussed in relation to the selective toxicity of benzimidazoles against helminths and the mechanism of drug resistance.  相似文献   

3.
The molecular mechanism of benzimidazole (BZ) resistance in cyathostomins of horses is still unclear. Previous studies revealed that the TTC or TAC polymorphism in codon 200 of the beta-tubulin isotype 1 gene is not as strictly correlated with BZ resistance as in trichostrongyles in sheep. To identify further sites of polymorphism within the beta-tubulin gene related to BZ resistance, complete complementary DNAs (cDNAs) encoding beta-tubulin of adult worms of Cylicocyclus nassatus, Cyathostomum pateratum, Cyathostomum coronatum, Cyathostomum catinatum, Cylicostephanus longibursatus, and Cylicostephanus goldi of a BZ-resistant cyathostomin population were characterized using specific primers. The cDNA sequence of each species spans 1,429 bp, encoding a protein of 448 amino acids. The interspecific identities are 95.2-99.6% at the nucleotide and 98.7-100.0% at the peptide level. The comparison of the amino acid sequences of individuals isolated from the BZ-resistant cyathostomin population with those from individuals of Cc. nassatus, Cy. coronatum, Cy. pateratum, and Cy. catinatum of a BZ-susceptible one showed differing amino acids in 11 positions. The commonness of a phenylalanine to tyrosine mutation at position 167 in all the 6 cyathostomin species isolated from a BZ-resistant population suggests its involvement in the molecular mechanism in BZ resistance.  相似文献   

4.
It has been shown that benzimidazole (BZ) resistance in sheep gastrointestinal nematodes is linked with an increase in beta-tubulin codon 200 tyrosine-expressing alleles in the resistant parasite populations. Here, an allele-specific PCR has been developed for the discrimination of the TAC/TTC polymorphism in the beta-tubulin 200 codon of small strongyles. One reverse primer was used in 2 separate amplifications with 1 of 2 forward primers that differed only in their final 3' nucleotide. The primers flank a facultative intron/exon. Therefore, the amplified fragments are either 251 or 308 bp in size, depending on the presence or absence of the intron in individual worms. Amplification of genomic DNA isolated from single adult small strongyles from a set of 7 species consistently generated allele-specific products. Three worms each of the following species were used: Cylicocyclus nassatus, Cylicocyclus insigne, Cylicocyclus elongatus, Cylicocyclus radiatus, Cyathostomum pateratum, Cyathostomum catinatum, and Cyathostomum coronatum. PCR with DNA isolated from single larvae also reproducibly generated specific fragments. This method might be applied for the future assessment of allele frequencies in susceptible and resistant populations to further investigate the mechanism of BZ-resistance in small strongyles.  相似文献   

5.
Anthelmintic resistance (AR) against gastrointestinal nematodes (GINs) of sheep and goats is a global concern. To address the problem, this study assessed the status of AR in different government and private sheep and goat farms in Bangladesh. We conducted fecal egg count reduction test (FECRT) and Egg hatch assay (EHA) experiments. For the detection of resistant larvae, pooled fecal samples from treated and non-treated groups were subjected to coproculture. Furthermore, 195 adult Haemonchus parasites were genotyped to ascertain benzimidazole (BZ) resistance allele from seven topographic zones of Bangladesh using allele specific PCR (AS-PCR). In FECRT, the percentage reduction along with 95% confidence intervals indicated that GINs were resistant to albendazole (ABZ), levamisole (LEV) and ivermectin (IVM). Coproculture revealed that Haemonchus spp., Oesophagostomum spp. and Trichostrongylus spp. were resistant to anthelmintics. ABZ resistance was also confirmed by in vitro EHA in all the farms except the private goat farm in Mymensingh. The genotype frequencies were 6% for homozygous resistant (rr), 59% for heterozygous (rS) and 35% for homozygous susceptible (SS) among different topographic zones. The allelic frequency of the mutation conferring resistance (r) ranged from 25% to 47% signifying resistance to BZ in nematodes of sheep/goats. The genotype frequencies (rr, rS and SS) and allelic frequencies (r and S) varied significantly (p˂0.05) in different zones in Bangladesh. Overall, the data suggest an alarming condition created by multiple AR in Bangladesh.  相似文献   

6.
Frequent and broad application of anthelmintic drugs for treatment of intestinal parasite infection has led to drug resistance that often renders whole populations of livestock unresponsive to treatment. Therefore, it is important to detect mutations associated with drug resistance before it becomes clinically manifest. To monitor developing drug resistance against benzimidazoles (BZ), we developed real-time PCR assays and applied them to analyse the beta-tubulin isotype-1 gene of the hookworm Ancylostoma caninum, an important parasite of dogs. Previously, we developed PCR assays to monitor codon positions 167 and 200. Here, we describe an assay which is able to detect resistance alleles in codon 198. These real-time PCR assays were subsequently applied to screen hookworm specimens recovered from dogs in Georgia. No elevated levels of polymorphisms at the investigated loci were found, suggesting that selection for resistance in the tested samples did not occur.  相似文献   

7.
Here we demonstrate a method for unbiased multiplexed deep sequencing of RNA and DNA libraries using a novel, efficient and adaptable barcoding strategy called Post Amplification Ligation-Mediated (PALM). PALM barcoding is performed as the very last step of library preparation, eliminating a potential barcode-induced bias and allowing the flexibility to synthesize as many barcodes as needed. We sequenced PALM barcoded micro RNA (miRNA) and DNA reference samples and evaluated the quantitative barcode-induced bias in comparison to the same reference samples prepared using the Illumina TruSeq barcoding strategy. The Illumina TruSeq small RNA strategy introduces the barcode during the PCR step using differentially barcoded primers, while the TruSeq DNA strategy introduces the barcode before the PCR step by ligation of differentially barcoded adaptors. Results show virtually no bias between the differentially barcoded miRNA and DNA samples, both for the PALM and the TruSeq sample preparation methods. We also multiplexed miRNA reference samples using a pre-PCR barcode ligation. This barcoding strategy results in significant bias.  相似文献   

8.
A fragment of the beta-tubulin gene was polymerase chain reaction (PCR) amplified from genomic DNAs of Babesia bovis, Babesia bigemina, Babesia divergens, Babesia major, Babesia caballi, Babesia equi, Babesia microti, Theileria annulata and Theileria sergenti. Single amplification products were obtained for each of these species, but the size of the amplicons varied from 310 to 460 bp. Sequence analysis revealed that this variation is due to the presence of a single intron, which ranged from 20 to 170 bp. The extensive genetic variability at the beta-tubulin locus has been exploited to develop two types of species identification assays. The first assay can be used on samples containing mostly parasite DNA, like those prepared from infected erythrocytes. Following PCR amplification, the species identification is obtained directly from the size of the products (for Babesia species infecting human or horse) or using a simple PCR-restriction fragment length polymorphism (RFLP) protocol (for Babesia species infecting cattle). The second assay can be used on samples prepared from whole blood, that contain both parasite and host DNAs. In this case, due to the strong conservation of the beta-tubulin gene, co-amplification of a gene fragment from the host DNA was observed. A nested PCR assay was developed for the specific amplification of parasite DNA, using a primer designed to span the exon-intron boundary. Direct identification of Babesia species infecting human and horse is again obtained after the electrophoretic separation of the amplification products, while for Babesia and Theileria species infecting cattle, differentiation is based on a nested PCR-RFLP protocol. These methods may be used for the simultaneous identification of horses and cattle carrying multiple parasites by means of a single PCR or using the PCR-RFLP protocol.  相似文献   

9.
Genotyping of thiopurine S-methyltransferase (TPMT) is recommended for predicting the adverse drug response of thiopurines. In the current study, a novel version of allele-specific PCR (AS-PCR), termed competitive real-time fluorescent AS-PCR (CRAS-PCR) was developed to analyze the TPMT*2 genotype in ethnic Chinese. This technique simultaneously uses wild-type and mutant allele-specific scorpion primers in a single reaction. To determine the optimal conditions for both traditional AS-PCR and CRAS-PCR, we used the Taguchi method, an engineering optimization process that balances the concentrations of all components using an orthogonal array rather than a factorial array. Instead of running up to 264 experiments with the conventional factorial method, the Taguchi method achieved the same optimization using only 16 experiments. The optimized CRAS-PCR system completely avoided non-specific amplification occurring in traditional AS-PCR and could be performed at much more relaxed reaction conditions at 1% sensitivity, similar to traditional AS-PCR. TPMT*2 genotyping of 240 clinical samples was consistent with published data. In conclusion, CRAS-PCR is a novel and robust genotyping method, and the Taguchi method is an effective tool for the optimization of molecular analysis techniques.  相似文献   

10.
A coprological survey to analyze the presence of flock resistance to benzimidazoles (BZ) and macrocyclic lactones (ML) was performed in sheep under field conditions. Fecal samples were collected from 2,625 sheep in 72 commercial farms from Galicia (NW Spain). The in vitro (FECRT, fecal egg count reduction test) and in vivo (EHA, egg hatch assay, and LFIA, larval feeding inhibition assay) tests were used to assess the efficacy of these anthelmintics. Coprocultures were also developed to obtain knowledge on the main genera of trichostrongylid nematoda prior to, and after, the administration of the anthelmintics. By using the FECRT, BZ resistance was observed in 13 (18%) flocks, whereas ML resistance was only detected in 2 (3%) farms. The number of resistant flocks to BZ was 21 (29%) by using the EHA and 7 (10%) by means of the LFIA. None of the flocks used in this study showed simultaneous resistance to both employed anthelmintics. The results from the in vitro and in vivo tests revealed that 92% of the flocks FECRT resistant to BZ were also resistant with the EHA. The LFIA confirmed all the farms resistant to ML by using the in vivo test. After the administration of BZ, nematode larvae belonging to Teladorsagia circumcincta (32.2%), Trichostrongylus spp. (29%), Nematodirus spp. (6.5%), and Chabertia ovis (3.2%) were identified. In the flocks receiving ML, only T. circumcincta was identified (57%). We recommend the use of in vitro tests because they are more efficient. As the use of macrocyclic lactones is increasing in this region, further investigation is needed for detecting resistance to the anthelmintic family compounds by the LFIA.  相似文献   

11.
Phasmarhabditis hermaphrodita is a nematode parasite that infects and kills several species of slugs. The nematode is produced commercially as a biological control agent for slug pests of agriculture and horticulture. Given the difficulties of distinguishing this species from other nematode species in soil samples, very little is known about its natural ecology or its behaviour and persistence following application for biological control. Here we describe a method to quantify P. hermaphrodita in soil samples based on real time PCR. We designed primers and a dual labelled fluorescent probe that can be used to quantify numbers of P. hermaphrodita and which is capable of distinguishing this species from the morphologically identical Phasmarhabditis neopapillosa. We compared different methods whereby the entire nematode community is extracted prior to DNA extraction, and three methods to extract DNA directly from soil samples. Both nematode extraction and DNA extraction from large (10 g) samples of soil gave reliable estimates of nematode numbers, but methods which extracted DNA from small (1 g or less) soil samples substantially underestimated numbers. However, direct extraction of DNA from soils may overestimate numbers of live nematodes as DNA from dead nematodes was found to persist in soil for at least 6 days. The technique could be modified for detection and quantification of all soil borne parasitic nematodes.  相似文献   

12.
Benzimidazole resistance has evolved in a variety of organisms and typically results from mutations in the beta-tubulin locus at specific amino acid sites. Despite widespread treatment of human intestinal nematodes with benzimidazole drugs, there have been no unambiguous reports of resistance. However, since beta-tubulin mutations conferring resistance are generally recessive, frequencies of resistance alleles less than 30% would be difficult to detect on the basis of drug treatment failures. Here we investigate sequence variation in a 1079 bp segment of the beta-tubulin locus in the human whipworm Trichuris trichiura from 72 individual nematodes from seven countries. We did not observe any alleles with amino acid mutations indicative of resistance, and of 40 point mutations there were only four non-synonymous mutations all of which were singletons. Estimated effective population sizes are an order of magnitude lower than those from another nematode species in which benzimidazole resistance has developed (Haemonchus contortus). Both the lower diversity and reduced population sizes suggest that benzimidazole resistance is likely to evolve less rapidly in Trichuris than in trichostrongyle parasites of livestock. We observed moderate levels of population subdivision (Phi(ST)=0.26) comparable with that previously observed in Ascaris lumbricoides, and identical alleles were frequently found in parasites from different continents, suggestive of recent admixture. A particularly interesting feature of the data is the high nucleotide diversities observed in nematodes from the Caribbean. This genetic complexity may be a direct result of extensive admixture and complex history of human populations in this region of the world. These data should encourage (but not make complacent) those involved in large-scale benzimidazole treatment of human intestinal nematodes.  相似文献   

13.
DNA barcoding approaches have greatly increased our understanding of biodiversity on the planet, and metabarcoding is widely used for classifying members of the phylum Nematoda. However, loci typically utilized in metabarcoding studies are often unable to resolve closely related species or are unable to recover all taxa present in a sample due to inadequate PCR primer binding. Mitochondrial metagenomics (mtMG) is an alternative approach utilizing shotgun sequencing of total DNA to recover the mitochondrial genomes of all species present in samples. However, this approach requires a comprehensive reference database for identification and currently available mitochondrial sequences for nematodes are highly dominated by sequences from the order Rhabditida, and excludes many clades entirely. Here, we analysed the efficacy of mtMG for the recovery of nematode taxa and the generation of mitochondrial genomes. We first developed a curated reference database of nematode mitochondrial sequences and expanded it with 40 newly sequenced taxa. We then tested the mito-metagenomics approach using a series of nematode mock communities consisting of morphologically identified nematode species representing various feeding traits, life stages, and phylogenetic relationships. We were able to identify all but two species through the de novo assembly of COX1 genes. We were also able to recover additional mitochondrial protein coding genes (PCGs) for 23 of the 24 detected species including a full array of 12 PCGs from five of the species. We conclude that mtMG offers a potential for the effective recovery of nematode biodiversity but remains limited by the breadth of the reference database.  相似文献   

14.
BACKGROUND: The majority of filarial nematode species are host to Wolbachia bacterial endosymbionts, although a few including Acanthocheilonema viteae, Onchocerca flexuosa and Setaria equina have been shown to be free of infection. Comparisons of species with and without symbionts can provide important information on the role of Wolbachia symbiosis in the biology of the nematode hosts and the contribution of the bacteria to the development of disease. Previous studies by electron microscopy and PCR have failed to detect intracellular bacterial infection in Loa loa. Here we use molecular and immunohistological techniques to confirm this finding. METHODS: We have used a combination of PCR amplification of bacterial genes (16S ribosomal DNA [rDNA], ftsZ and Wolbachia surface protein [WSP]) on samples of L. loa adults, third-stage larvae (L3) and microfilariae (mf) and immunohistology on L. loa adults and mf derived from human volunteers to determine the presence or absence of Wolbachia endosymbionts. Samples used in the PCR analysis included 5 adult female worms, 4 adult male worms, 5 mf samples and 2 samples of L3. The quality and purity of nematode DNA was tested by PCR amplification of nematode 5S rDNA and with diagnostic primers from the target species and used to confirm the absence of contamination from Onchocerca sp., Mansonella perstans, M. streptocerca and Wuchereria bancrofti. Immunohistology was carried out by light and electron microscopy on L. loa adults and mf and sections were probed with rabbit antibodies raised to recombinant Brugia malayi Wolbachia WSP. Samples from nematodes known to be infected with Wolbachia (O. volvulus, O. ochengi, Litomosoides sigmodontis and B. malayi) were used as positive controls and A. viteae as a negative control. RESULTS: Single PCR analysis using primer sets for the bacterial genes 16S rDNA, ftsZ, and WSP were negative for all DNA samples from L. loa. Positive PCR reactions were obtained from DNA samples derived from species known to be infected with Wolbachia, which confirmed the suitability of the primers and PCR conditions. The quality and purity of nematode DNA samples was verified by PCR amplification of 5S rDNA and with nematode diagnostic primers. Additional analysis by 'long PCR' failed to produce any further evidence for Wolbachia symbiosis. Immunohistology of L. loa adults and mf confirmed the results of the PCR with no evidence for Wolbachia symbiosis. CONCLUSION: DNA analysis and immunohistology provided no evidence for Wolbachia symbiosis in L. loa.  相似文献   

15.
Current and future global crop yields depend upon soil quality to which soil organisms make an important contribution. The European Union seeks to protect European soils and their biodiversity for instance by amending its Directive on pesticide usage. This poses a challenge for control of Globodera pallida (a potato cyst nematode) for which both natural resistance and rotational control are inadequate. One approach of high potential is transgenically based resistance. This work demonstrates the potential in the field of a new transgenic trait for control of G. pallida that suppresses root invasion. It also investigates its impact and that of a second transgenic trait on the non-target soil nematode community. We establish that a peptide that disrupts chemoreception of nematodes without a lethal effect provides resistance to G. pallida in both a containment and a field trial when precisely targeted under control of a root tip-specific promoter. In addition we combine DNA barcoding and quantitative PCR to recognise nematode genera from soil samples without microscope-based observation and use the method for nematode faunal analysis. This approach establishes that the peptide and a cysteine proteinase inhibitor that offer distinct bases for transgenic plant resistance to G. pallida do so without impact on the non-target nematode soil community.  相似文献   

16.
17.
Pyrosequencing of an artificially assembled nematode community of known nematode species at known densities allowed us to characterize the potential extent of chimera problems in multi-template eukaryotic samples. Chimeras were confirmed to be very common, making up to 17% of all high quality pyrosequencing reads and exceeding 40% of all OCTUs (operationally clustered taxonomic units). Typically, chimeric OCTUs were made up of single or double reads, but very well covered OCTUs were also present. As expected, the majority of chimeras were formed between two DNA molecules of nematode origin, but a small proportion involved a nematode and a fragment of another eukaryote origin. In addition, examples of a combination of three or even four different template origins were observed. All chimeras were associated with the presence of conserved regions with 80% of all recombinants following a conserved region of about 25bp. While there was a positive influence of species abundance on the overall number of chimeras, the influence of specific-species identity was less apparent. We also suggest that the problem is not nematode exclusive, but instead applies to other eukaryotes typically accompanying nematodes (e.g. fungi, rotifers, tardigrades). An analysis of real environmental samples revealed the presence of chimeras for all eukaryotic taxa in patterns similar to that observed in artificial nematode communities. This information warrants caution for biodiversity studies utilizing a step of PCR amplification of complex DNA samples. When unrecognized, generated abundant chimeric sequences falsely overestimate eukaryotic biodiversity.  相似文献   

18.
Many methods have been developed to assay for single nucleotide polymorphisms (SNPs), but generally these depend on access to specialised equipment. Allele-specific polymerase chain reaction (AS-PCR) is a method that does not require specialised equipment (other than a thermocycler), but there is a common perception that AS-PCR markers can be unreliable. We have utilised a three primer AS-PCR method comprising of two flanking-primers combined with an internal allele-specific primer. We show here that this method produces a high proportion of robust markers (from candidate allele specific primers). Forty-nine inter-varietal SNP sites in 31 barley (Hordeum vulgare L.) genes were targeted for the development of AS-PCR assays. The SNP sites were found by aligning barley expressed sequence tags from public databases. The targeted genes correspond to cDNAs that have been used as restriction fragment length polymorphic probes for linkage mapping in barley. Two approaches were adopted in developing the markers. In the first approach, designed to maximise the successful development of markers to a SNP site, markers were developed for 18 sites from 19 targeted (95% success rate). With the second approach, designed to maximise the number of markers developed per primer synthesised, markers were developed for 18 SNP sites from 30 that were targeted (a 60% success rate). The robustness of markers was assessed from the range of annealing temperatures over which the PCR assay was allele-specific. The results indicate that this form of AS-PCR is highly successful for the development of robust SNP markers. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

19.
Summary Genes conferring resistance to the beet cyst nematode (Heterodera schachtii Schm.) have been transferred to sugar beet (Beta vulgaris L.) from three wild species of the Procumbentes section using monosomic addition and translocation lines, because no meiotic recombination occurs between chromosomes of cultured and wild species. In the course of a project to isolate the nematode resistance genes by strategies of reverse genetics, probes were cloned from DNA of a fragmented B. procumbens chromosome carrying a resistance gene, which had been isolated by pulsed-field gel electrophoresis. One probe (pRK643) hybridized with a short dispersed repetitive DNA element, which was found only in wild beets, and thus may be used as a molecular marker for nematode resistance to progenies of monosomic addition lines segregating resistant and susceptible individuals. Additional probes for the resistance gene region were obtained with a polymerase chain reaction (PCR)-based strategy using repetitive primers to amplify DNA located between repetitive elements. One of these probes established the existence of at least six different chromosomes from wild beet species, each conferring resistance independently of the others. A strict correlation between the length of the wild beet chromatin introduced in fragment addition and translocation lines and the repeat copy number has been used physically to map the region conferring resistance to a chromosome segment of 0.5-3 Mb.  相似文献   

20.
Three single nucleotide polymorphism (SNP) sites in which amino acids had changed were detected by sequence analysis within the leucine-rich repeat (LRR) region of the Fom-2 gene. Cleaved amplified polymorphic sequence (CAPS) and allele-specific PCR (AS-PCR) methods were employed to explore the SNP validation linked to fusarium wilt resistance in the F1 and F2 generations simultaneously. Homozygous- and heterozygous-resistant genotypes and homozygous-susceptible genotype could be clearly distinguished using the CAPS method, and three detected SNP sites were observed to be linked to fusarium wilt resistance, with a segregation ratio of 1:2:1 in the F2 generation. In addition, heterozygous-resistant and homozygous-susceptible genotypes could be clearly distinguished in the F1 generation using the AS-PCR method, showing a 3:1 segregation in terms of resistant and susceptible genotypes in the F2 generation. We therefore developed SNP-based functional markers (FMs) and identified some melon germplasm resistant to fusarium wilt by FM analysis within melon species. In conclusion, the SNP-based FMs originating from the SNP site of the Fom-2 LRR region were determined to be linked to fusarium wilt resistance and showed promise in the enhancement of breeding in melon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号