首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
alpha-Latrotoxin (alpha-LTX) induces exocytosis of small synaptic vesicles (SSVs) in neuronal cells both by a calcium-independent mechanism and by opening cation-permeable pores. Since the basic molecular events regulating exocytosis in neurons and endocrine cells may be similar, we have used the exocytosis of insulin-containing large dense core vesicles (LDCVs) as a model system. In primary pancreatic beta-cells and in the derived cell lines INS-1 and MIN6, alpha-LTX increased insulin release in the absence of extracellular calcium, but the insulin-secreting cell lines HIT-T15 and RINm5F were unresponsive. alpha-LTX did not alter membrane potential or cytosolic calcium, and its stimulatory effect on exocytosis was still observed in pre-permeabilized INS-1 cells kept at 0.1 microM Ca2+. Consequently, pore formation or ion fluxes induced by alpha-LTX could be excluded. The Ca2+-independent alpha-LTX-binding protein, latrophilin, is a novel member of the secretin family of G protein-coupled receptors (GPCR). Sensitivity to alpha-LTX correlated with expression of latrophilin, but not with synaptotagmin I or neurexin Ialpha expression. Moreover, transient expression of latrophilin in HIT-T15 cells conferred alpha-LTX-induced exocytosis. Our results indicate that direct stimulation of exocytosis by a GPCR mediates the Ca2+-independent effects of alpha-LTX in the absence of altered ion fluxes. Therefore, direct regulation by receptor-activated heterotrimeric G proteins constitutes an important feature of the endocrine exocytosis of insulin-containing LDCVs and may also apply to SSV exocytosis in neurons.  相似文献   

2.
The spider venom alpha-latrotoxin (alpha-LTX) induces massive exocytosis after binding to surface receptors, and its mechanism is not fully understood. We have investigated its action using toxin-sensitive MIN6 beta-cells, which express endogenously the alpha-LTX receptor latrophilin (LPH), and toxin-insensitive HIT-T15 beta-cells, which lack endogenous LPH. alpha-LTX evoked insulin exocytosis in HIT-T15 cells only upon expression of full-length LPH but not of LPH truncated after the first transmembrane domain (LPH-TD1). In HIT-T15 cells expressing full-length LPH and in native MIN6 cells, alpha-LTX first induced membrane depolarization by inhibition of repolarizing K(+) channels followed by the appearance of Ca(2+) transients. In a second phase, the toxin induced a large inward current and a prominent increase in intracellular calcium ([Ca(2+)](i)) reflecting pore formation. Upon expression of LPH-TD1 in HIT-T15 cells just this second phase was observed. Moreover, the mutated toxin LTX(N4C), which is devoid of pore formation, only evoked oscillations of membrane potential by reversible inhibition of iberiotoxin-sensitive K(+) channels via phospholipase C, activated L-type Ca(2+) channels independently from its effect on membrane potential, and induced an inositol 1,4,5-trisphosphate receptor-dependent release of intracellular calcium in MIN6 cells. The combined effects evoked transient increases in [Ca(2+)](i) in these cells, which were sensitive to inhibitors of phospholipase C, protein kinase C, or L-type Ca(2+) channels. The latter agents also reduced toxin-induced insulin exocytosis. In conclusion, alpha-LTX induces signaling distinct from pore formation via full-length LPH and phospholipase C to regulate physiologically important K(+) and Ca(2+) channels as novel targets of its secretory activity.  相似文献   

3.
4.
5.
The B-chain homodimer of platelet-derived growth factor (PDGF) is only very inefficiently secreted and remains largely associated with the producer cell; in contrast, the dimer of the short, and most common, splice variant of the A-chain is secreted. To identify the structural background to the differences in the secretory pattern between the different isoforms of PDGF, a set of chimeric PDGF A/B cDNAs was generated and expressed in COS cells. Analyses of the biosynthesis and processing of the corresponding products led to the identification of a determinant for cell association in the carboxy-terminal third of the PDGF B-chain precursor. Introduction of stop codons at various positions in the carboxy-terminal prosequence of the PDGF B-chain localized this determinant to an 11-amino-acid-long region (amino acids 219-229). This region contains an 8-amino-acid-long basic sequence that is homologous to a sequence present in an alternatively spliced longer version of the PDGF A-chain. In contrast to the short splice variant, the long splice A-chain version, like the B-chain, was found to remain predominantly cell associated. Thus, we have identified a conserved sequence that inhibits the secretion of some of the PDGF isoforms. Our data also suggest that switching of splicing patterns can be a mechanism to regulate the formation of secreted or cell-associated forms of PDGF-AA and possibly other growth factors.  相似文献   

6.
To date, five human metabotropic glutamate (mGlu) 1 receptor splice variants (1a, 1b, 1d, 1f, and 1g) have been described, all of which involve alternative C-terminal splicing. mGlu1a receptor contains a long C-terminal domain (341 amino acids), which has been shown to scaffold with several proteins and contribute to the structure of the post-synaptic density. However, several shorter mGlu1 receptor splice variants lack the sequence required for these interactions, and no major functional differences between these short splice variants have been described. By using RT-PCR we have shown that two human melanoma cell lines express both mGlu1a and mGlu1b receptors. In addition, using 3′RACE, we identified three previously unknown mGlu1 receptor mRNAs. Two differ in the length of their 3′ untranslated region (UTR), and encode the same predicted protein as mGlu1g receptor—the shortest of all mGlu1 receptor splice variants. The third mRNA, named mGlu1h, encodes a predicted C-terminal splice variant of 10 additional amino acids. mGlu1h mRNA was observed in two different melanoma cell lines and is overexpressed, compared with melanoma precursor cells, melanocytes. Most importantly, this new splice variant, mGlu1h receptor, is encoded by two previously unidentified exons located within the human GRM1 gene. Additionally, these new exons are found exclusively within the GRM1 genes of higher primates and are highly conserved. Therefore, we hypothesize that mGlu1h receptors play a distinct role in primate glutamatergic signaling.  相似文献   

7.
Among four closely related members of the FGF receptor family, FGFR 1, 2, and 3 have alternative splicing forms encoded by different exons for the C-terminal half of the third Ig-like domain, but FGFR 4 has no such alternative exon. Furthermore, FGFR 1, 2, and 3 have another splice variant of nontransmembrane type; however, such a variant has not been reported for FGFR 4. While searching for a novel receptor-type tyrosine kinase by RT-PCR, we identified a non-transmembrane-type receptor of FGFR 4 in human intestinal epithelial cell lines (Intestine 407 and Caco-2). Sequence analysis of this receptor revealed that exon 9 coding the single transmembrane domain was displaced by intron 9. Consequently, this variant form was 120 bp shorter than the normal form and had no transmembrane portion. Moreover, the signal sequence in exon 2 was maintained, suggesting that this splice variant is a soluble receptor. This soluble receptor was detected in human gastrointestinal epithelial cells and pancreas, and also in gastric, colon, and pancreatic cancer cell lines. Single cell RT-PCR showed that this soluble receptor was expressed simultaneously with the transmembrane-type receptor in the same cell. Western blot analysis revealed that this receptor was secreted from the transfected COS7 cells. Thus, a soluble-form splice variant of FGFR 4 was identified in human gastrointestinal epithelial cells and cancer cells. This is the first report of alternative splicing of FGFR 4.  相似文献   

8.
9.
10.
Amphiphysins are SH3 domain-containing proteins thought to function in clathrin-mediated endocytosis. To investigate the potential role of amphiphysin II in cellular trafficking of G protein-coupled somatostatin (SRIF) receptors, we generated an AtT-20 cell line stably overexpressing amphiphysin IIb, a splice variant that does not bind clathrin. Endocytosis of (125)I-[d-Trp(8)]SRIF was not affected by amphiphysin IIb overexpression. However, the maximal binding capacity (B(max)) of the ligand on intact cells was significantly lower in amphiphysin IIb overexpressing than in non-transfected cells. This difference was no longer apparent when the experiments were performed on crude cell homogenates, suggesting that amphiphysin IIb overexpression interferes with SRIF receptor targeting to the cell surface and not with receptor synthesis. Accordingly, immunofluorescence experiments demonstrated that, in amphiphysin overexpressing cells, sst(2A) and sst(5) receptors were segregated in a juxtanuclear compartment identified as the trans-Golgi network. Amphiphysin IIb overexpression had no effect on corticotrophin-releasing factor 41-stimulated adrenocorticotropic hormone secretion, suggesting that it is not involved in the regulated secretory pathway. Taken together, these results suggest that amphiphysin II is not necessary for SRIF receptor endocytosis but is critical for its constitutive targeting to the plasma membrane. Therefore, amphiphysin IIb may be an important component of the constitutive secretory pathway.  相似文献   

11.
The granulocyte colony-stimulating factor receptor (G-CSF-R) transduces signals important for the proliferation and maturation of myeloid progenitor cells. To identify functionally important regions in the cytoplasmic domain of the G-CSF-R, we compared the actions of the wild-type receptor, two mutants, and a natural splice variant in transfectants of the mouse pro-B cell line BAF3 and two myeloid cell lines, 32D and L-GM. A region of 55 amino acids adjacent to the transmembrane domain was found to be sufficient for generating a growth signal. The immediate downstream sequence of 30 amino acids substantially enhanced the growth signaling in the three cell lines. In contrast, the carboxy-terminal part of 98 amino acids strongly inhibited growth signaling in the two myeloid cell lines but not in BAF3 cells. Truncation of this region lead to an inability of the G-CSF-R to transduce maturation signals in L-GM cells. An alternative carboxy tail present in a splice variant of the G-CSF-R also inhibited growth signaling, notably in both the myeloid cells and BAF3 cells, but appeared not to be involved in maturation.  相似文献   

12.
Alternative splicing enables G protein-coupled receptor (GPCR) genes to greatly increase the number of structurally and functionally distinct receptor isoforms. However, the functional role and relevance of the individual GPCR splice variants in regulating physiological processes are still to be assessed. A naturally occurring alternative splice variant of Bombyx CAPA-PVK receptor, BomCAPA-PVK-R1-Δ341, has been shown to act as a dominant-negative protein to regulate cell surface expression and function of the canonical CAPA-PVK receptor. Herein, using functional assays, we identify the splice variant Δ341 as a specific receptor for neuropeptide CAPA-PK, and upon activation, Δ341 signals to ERK1/2 pathway. Further characterization demonstrates that Δ341 couples to Gαi/o, distinct from the Gαq-coupled canonical CAPA-PVK receptor, triggering ERK1/2 phosphorylation through Gβγ-PI3K-PKCζ signaling cascade. Moreover, our ELISA data show that the ligand-dependent internalization of the splice variant Δ341 is significantly impaired due to lack of GRKs-mediated phosphorylation sites. Our findings highlight the potential of this knowledge for molecular, pharmacological and physiological studies on GPCR splice variants in the future.  相似文献   

13.
14.
Tenascin-C is an oligomeric glycoprotein of the extracellular matrix that has been found to have both adhesive and anti-adhesive properties for cells. Recent elucidation of the two major TNC splice variants (320 kDa and 220 kDa) has shed light on the possibility of varying functions of the molecule based on its splicing pattern. Tenascin-C is prominently expressed in embryogenesis and in pathologic conditions such as tumorogenesis and wound healing. Fibronectin is a prominent adhesive molecule of the extracellular matrix that is often co-localized with tenascin-C in these processes. We studied the chondrosarcoma cell line JJ012 with enzyme-linked immunoabsorbance assays, cell attachment assays and antibody-blocking assays to determine the adhesive/anti-adhesive properties of the two major tenascin-C splice variants with respect to fibronectin and their effect on chondrosarcoma cell attachment. We found that the small tenascin-C splice variant (220 kDa) binds to fibronectin, whereas the large tenascin-C splice variant (320 kDa) does not. In addition, the small tenascin-C splice variant was found to decrease adhesion for cells when bound to fibronectin, but contributed to adhesion when bound to plastic in fibronectin-coated wells. Antibody blocking experiments confirmed that both the small tenascin-C splice variant and fibronectin contribute to cell adhesion when bound to plastic. The large tenascin-C splice variant did not promote specific cell attachment. We hypothesize that the biologic activity of tenascin-C is dependent on the tissue-specific splicing pattern. The smaller tenascin-C isoform likely plays a structural and adhesive role, whereas the larger isoform, preferentially expressed in malignant tissue, likely plays a role in cell egress and metastasis.  相似文献   

15.
Several variants of the serotonin 5-HT4 receptor are known to be produced by alternative splicing. To survey the existence and usage of exons in humans, we cloned the human 5-HT4 gene. Based on sequence analysis seven C-terminal variants (a-g) and one internal splice variant (h) were found. We concentrated in this study on the functional characterization of the novel splice variant h, which leads to the insertion of 14 amino acids into the second extracellular loop of the receptor. The h variant was cloned as a splice combination with the C-terminal b variant; therefore, we call this receptor 5-HT4(hb). This novel receptor variant was expressed transiently in COS-7 cells, and its pharmacological profile was compared with those of the previously cloned 5-HT4(a) and 5-HT4(b) isoforms, with the latter being the primary reference for the h variant. In competition binding experiments using reference 5-HT4 ligands, no significant differences were detected. However, the broadly used 5-HT4 antagonist GR113808 discriminated functionally among the receptor variants investigated. As expected, it was an antagonist on the 5-HT4(a) and 5-HT4(b) variant but showed partial agonistic activity on the 5-HT4(hb) variant. These data emphasize the importance of variations introduced by splicing for receptor pharmacology and may help in the understanding of conflicting results seen with 5-HT4 ligands in different model systems.  相似文献   

16.
The effects of the spider toxin alpha-latrotoxin (alpha-LTX) on gametes, zygotes, and early embryos of the sea urchin Paracentrotus lividus have been investigated by in vivo experiments and by histochemical studies of acetylcholinesterase (AChE) activity. Treatment of unfertilized eggs with nanomolar amounts (1 to 0.3 nmol/l) of alpha-LTX neither triggered cortical granule exocytosis, nor prevented the elevation of the fertilization layer by sperms. Instead, fertilized eggs exposed to alpha-LTX showed noticeable alterations in cell surface topography, including the appearance of prominent membrane-limited blebs. Moreover, the zygotes treated with 1 nmol/l alpha-LTX failed to cleave. The histochemical staining of treated zygotes revealed a very strong AChE activity in the cortical region, including blebs. An enzyme reaction was also found in the perivitellin space. Our results suggest the hypothesis that some alpha-LTX receptors may appear after fertilization, supporting the awareness that fertilized eggs display excitable cell features.  相似文献   

17.
18.
19.
TRPC2 is a member of the transient receptor potential (TRP) superfamily of Ca2+-permeable channels expressed in nonexcitable cells. TRPC2 is involved in a number of physiological processes including sensory activation of the vomeronasal organ, sustained Ca2+ entry in sperm, and regulation of calcium influx by erythropoietin. Here, a new splice variant of TRPC2, called "Similar to mouse TRPC2" (smTRPC2), was identified consisting of 213 amino acids, largely coincident with the N-terminus of TRPC2 clone 17. This splice variant lacks all six TRPC2 transmembrane domains and the calcium pore. Expression of smTRPC2 was found in all tissues examined by RT-PCR and in primary erythroid cells by RT-PCR and Western blotting. Confocal microscopy of CHO-S cells transfected with TRPC2 clone 14 and smTRPC2 demonstrated that TRPC2 clone 14 and smTRPC2 both localize at or near the plasma membrane and in the perinuclear region. Cell surface localization of TRPC2 was confirmed with biotinylation, and was not substantially affected by smTRPC2 expression. Coassociation of TRPC2 c14 and alpha with smTRPC2 was confirmed by immunoprecipitation. To examine the functional significance of smTRPC2 expression, a CHO-S model was used to study its effect on calcium influx stimulated by Epo through TRPC2. Single CHO-S cells which express transfected Epo-R were identified by detection of green fluorescent protein (GFP). Cells that express transfected TRPC2 c14 or alpha were identified by detection of blue fluorescent protein (BFP). [Ca]i was quantitiated with Fura Red fluorescence using digital video imaging. Epo stimulated calcium influx through TRPC2 isoforms c14 and alpha, which was inhibited by coexpression of smTRPC2. These data demonstrate that a short splice variant of TRPC2 exists in many cell types, which associates with and modifies the activity of functional TRPC2 splice variants.  相似文献   

20.
Although ectopic expression of the cholecystokinin B/gastrin receptor (CCK-BR) is widely reported in human colorectal cancers, its role in mediating the proliferative effects of gastrin1-17 (G-17) on these cancers is unknown. Here we report the isolation of a novel splice variant of CCK-BR that exhibits constitutive (ligand-independent) activation of pathways regulating intracellular free Ca(2+) ([Ca(2+)](i)) and cell growth. The splice variant (designated CCK-BRi4sv for intron 4-containing splice variant) is expressed in colorectal cancers but not in normal colonic mucosa adjacent to the cancer. Balb3T3 cells expressing CCK-BRi4sv exhibited spontaneous, ligand-independent, oscillatory increases in [Ca(2+)](i), whereas cells expressing wild-type CCK-BR did not. Primary cultures of cells isolated from resected colorectal cancers also exhibited a similar pattern of spontaneous [Ca(2+)](i) oscillations. For both Balb3T3 and primary tumor cells, application of G-17 (10 and 200 nm, respectively) caused an increase in [Ca(2+)](i). Selective CCK-BR antagonists blocked the G-17-stimulated Ca(2+) responses but not the spontaneous [Ca(2+)](i) oscillations. Cells expressing CCK-BRi4sv exhibited an increased growth rate ( approximately 2.5-fold), in the absence of G-17, compared with cells expressing wild-type CCK-BR. The selective pattern of expression, constitutive activity, and trophic action associated with CCK-BRi4sv suggest that this variant may regulate colorectal cancer cell proliferation though a gastrin-independent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号