首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The Caenorhabditis elegans vulva is induced by a member of the epidermal growth factor (EGF) family that is expressed in the gonadal anchor cell, representing a prime example of signaling processes in animal development. Comparative studies indicated that vulva induction has changed rapidly during evolution. However, nothing was known about the molecular mechanisms underlying these differences. By analyzing deletion mutants in five Wnt pathway genes, we show that Wnt signaling induces vulva formation in Pristionchus pacificus. A Ppa-bar-1/beta-catenin deletion is completely vulvaless. Several Wnt ligands and receptors act redundantly in vulva induction, and Ppa-egl-20/Wnt; Ppa-mom-2/Wnt; Ppa-lin-18/Ryk triple mutants are strongly vulvaless. Wnt ligands are differentially expressed in the somatic gonad, the anchor cell, and the posterior body region, respectively. In contrast, previous studies indicated that Ppa-lin-17, one of the Frizzled-type receptors, has a negative role in vulva formation. We found that mutations in Ppa-bar-1 and Ppa-egl-20 suppress the phenotype of Ppa-lin-17. Thus, an unexpected complexity of Wnt signaling is involved in vulva induction and vulva repression in P. pacificus. This study provides the first molecular identification of the inductive vulva signal in a nematode other than Caenorhabditis.  相似文献   

2.
3.
In free-living nematodes, developmental processes like the formation of the vulva, can be studied at a cellular level. Cell lineage and ablation studies have been carried out in various nematode species and multiple changes in vulval patterning have been identified. In Pristionchus pacificus, vulva formation differs from Caenorhabditis elegans with respect to several autonomous and conditional aspects of cell fate specification. To understand the molecular basis of these evolutionary changes, we have performed a genetic analysis of vulva formation in P. pacificus. Here, we describe two mutants where the vulva is shifted posteriorly, affecting which precursor cells will form vulval tissue in P. pacificus. Mutant animals show a concomitant posterior displacement of the gonadal anchor cell, indicating that the gonad and the vulva are affected in a similar way. We show that mutations in the even-skipped homolog of nematodes, vab-7, cause these posterior displacements. In addition, cell ablation studies in the vab-7 mutant indicate that the altered position of the gonad not only changes the cell fate pattern but also the developmental competence of vulval precursor cells. Investigation of Cel-vab-7 mutant animals showed a similar but weaker vulva defective phenotype to the one described for Ppa-vab-7.  相似文献   

4.
Pristionchus pacificus: a well-rounded nematode   总被引:1,自引:0,他引:1  
Nematodes pervade Earth's biosphere and occupy innumerable ecological niches. The role of Caenorhabditis elegans as a model for developmental processes has encouraged us to cultivate a second nematode, Pristionchus pacificus, as a comparative counterpoint to address questions in development, behavior and ecology in nematode evolution. We hope that this endeavor, now more than a decade underway, will allow us to project findings onto other comparative models for biological processes. To this end, our laboratory has made an extensive genetic map and mutant screens to understand changes in developmental programs. Recently, we have been capitalizing on the whole genome sequence of P. pacificus to describe more thoroughly the molecular basis for these changes, as well as to better integrate our molecular knowledge with the biodiversity of Pristionchus species.  相似文献   

5.
Costs and benefits of foraging have been studied in predatory animals. In nematodes, ambushing or cruising behaviours represent adaptations that optimize foraging strategies for survival and host finding. A behaviour associated with host finding of ambushing nematode dauer juveniles is a sit-and-wait behaviour, otherwise known as nictation. Here, we test the function of nictation by relating occurrence of nictation in Pristionchus pacificus dauer juveniles to the ability to attach to laboratory host Galleria mellonella. We used populations of recently isolated and mutagenized laboratory strains. We found that nictation can be disrupted using a classical forward genetic approach and characterized two novel nictation-defective mutant strains. We identified two recently isolated strains from la Réunion island, one with a higher proportion of nictating individuals than the laboratory strain P. pacificus PS312. We found a positive correlation between nictation frequencies and host attachment in these strains. Taken together, our combination of genetic analyses with natural variation studies presents a new approach to the investigation of behavioural and ecological functionality. We show that nictation behaviour in P. pacificus nematodes serves as a host-finding behaviour. Our results suggest that nictation plays a role in the evolution of new life-history strategies, such as the evolution of parasitism.  相似文献   

6.
Tube formation is a widespread process during organogenesis. Specific cellular behaviors participate in the invagination of epithelial monolayers that form tubes. However, little is known about the evolutionary mechanisms of cell assembly into tubes during development. In Caenorhabditis elegans, the detailed step-to-step process of vulva formation has been studied in wild type and in several mutants. Here we show that cellular processes during vulva development, which involve toroidal cell formation and stacking of rings, are conserved between C. elegans and Pristionchus pacificus, two species of nematodes that diverged approximately 100 million years ago. These cellular behaviors are divided into phases of cell proliferation, short-range migration, and cell fusion that are temporally distinct in C. elegans but not in P. pacificus. Thus, we identify heterochronic changes in the cellular events of vulva development between these two species. We find that alterations in the division axes of two equivalent vulval cells from Left-Right cleavage in C. elegans to Anterior-Posterior division in P. pacificus can cause the formation of an additional eighth ring. Thus, orthogonal changes in cell division axes with alterations in the number and sequence of cell fusion events result in dramatic differences in vulval shape and in the number of rings in the species studied. Our characterization of vulva formation in P. pacificus compared to C. elegans provides an evolutionary-developmental foundation for molecular genetic analyses of organogenesis in different species within the phylum Nematoda.  相似文献   

7.
In vertebrates, receptor tyrosine kinases (RTKs) have been identified as growth factor receptors and proto-oncogenes. Many of these RTKs appear to play a key role in the regulation of cell growth. Recent analyses of several Drosophila genes encoding putative RTKs indicate that this class of proteins also serves an important role in cell fate decisions which depend on cellular interactions during development. The sevenless RTK mediates the position-dependent specification of a particular photoreceptor cell type (R7) in the eye. The local specification of R7 cells requires a functional tyrosine kinase domain of the sevenless protein but does not depend on the spatially restricted expression of the sevenless gene. The Drosophila EGF receptor homolog serves multiple functions during development, some of which are clearly unrelated to regulation of cell growth. Finally, the torso gene encodes an RTK required for the specification of the terminal regions of the Drosophila larva. A number of other genes have been genetically identified that appear to function in the same developmental processes upstream or downstream of these three RTKs. These loci are excellent candidates for genes encoding other components of the signalling pathways such as ligands or substrates of the RTKs.  相似文献   

8.
In the nematode Caenorhabditis elegans, up to 15% of the genes are organized in operons. Polycistronic precursor RNAs are processed by trans-splicing at the 5' ends of genes by adding a specific trans-spliced leader. Ten different spliced leaders are known in C. elegans that differ in sequence and abundance. The SL1 leader is most abundant and is spliced to the 5' ends of monocistronic genes and to upstream genes in operons. Trans-splicing is common among nematodes and was observed in the genera Panagrellus, Ascaris, Haemonchus, Anisakis, and Brugia. However, little is known about operons in nonrhabditid nematodes. Dolichorhabditis CEW1, another rhabditid nematode that is now called Oscheius CEW1, contains operons and SL2 trans-splicing. We have studied the presence of operons and trans-splicing in Pristionchus pacificus, a species of the Diplogastridae that has recently been developed as a satellite organism in evolutionary developmental biology. We provide evidence that P. pacificus contains operons and that downstream genes are trans-spliced to SL2. Surprisingly, the one operon analyzed so far in P. pacificus is not conserved in C. elegans, suggesting unexpected genomic plasticity.  相似文献   

9.
One of the best known features of vulva development in Caenorhabditis elegans is the induction of vulval precursor cells by the gonadal anchor cell. Induction is crucial for the initiation of pattern formation within the C. elegans vulva equivalence group, and it is therefore surprising to find that this aspect of vulva formation, in particular, varies greatly among nematodes. In some species which form vulvae in the posterior body region, no gonadal signal is necessary for vulva induction. In other nematodes, such as Panagrolaimus, Oscheius, and Rhabditella, vulva formation depends on two temporally distinct gonadal inductions which specify the different cell fates. Here we report our analysis of vulva induction in Pristionchus pacificus, a specieswhich has recently been used as a genetic system to analyze the evolution of vulva development. Cell ablation studies in P. pacificus show that another mode of vulva induction exists. P. pacificus vulva formation depends on a continuous gonadal induction that starts several hours after hatching and continues until the birth of the anchor cell, some 20 h later. Mutations defective in gonadal induction result in the absence of vulva differentiation, suggesting that only one signaling system is involved in the gonadal-epidermal interaction. This new mode adds further to the great variety of gonadal inductions among nematode species. Received: 25 February 1999 / Accepted: 20 April 1999  相似文献   

10.
11.
12.
Developmental and behavioral plasticity allow animals to prioritize alternative genetic programs during fluctuating environments. Behavioral remodeling may be acute in animals that interact with host organisms, since reproductive adults and the developmentally arrested larvae often have different ethological needs for chemical stimuli. To understand the genes that coordinate the development and host-seeking behavior, we used the entomophilic nematode Pristionchus pacificus to characterize dauer-constitutive mutants (Daf-c) that inappropriately enter developmental diapause to become dauer larvae. We found two Daf-c loci with dauer-constitutive and cuticle exsheathment phenotypes that can be rescued by the feeding of Δ7-dafachronic acid, and that are dependent on the conserved canonical steroid hormone receptor Ppa-DAF-12. Specifically at one locus, deletions in the sole hydroxysteroid dehydrogenase (HSD) in P. pacificus resulted in Daf-c phenotypes. Ppa-hsd-2 is expressed in the canal-associated neurons (CANs) and excretory cells whose homologous cells in Caenorhabditis elegans are not known to be involved in the dauer decision. While in wildtype only dauer larvae are attracted to host odors, hsd-2 mutant adults show enhanced attraction to the host beetle pheromone, along with ectopic activation of a marker for putative olfactory neurons, Ppa-odr-3. Surprisingly, this enhanced odor attraction acts independently of the Δ7-DA/DAF-12 module, suggesting that Ppa-HSD-2 may be responsible for several steroid hormone products involved in coordinating the dauer decision and host-seeking behavior in P. pacificus.  相似文献   

13.
Nematodes are an attractive group of organisms for studying the evolution of developmental processes. Pristionchus pacificus was established as a satellite organism for comparing vulva development and other processes to Caenorhabditis elegans. The generation of a genetic linkage map of P.pacificus has provided a first insight into the structure and organization of the genome of this species. Pristionchus pacificus and C.elegans are separated from one another by >100 000 000 years such that the structure of the genomes of these two nematodes might differ substantially. To evaluate the amount of synteny between the two genomes, we have obtained 126 kb of continuous genomic sequence of P.pacificus, flanking the developmental patterning gene pal-1. Of the 20 predicted open reading frames in this interval, 11 have C.elegans orthologs. Ten of these 11 orthologs are located on C.elegans chromosome III, indicating the existence of synteny. However, most of these genes are distributed over a 12 Mb interval of the C.elegans genome and only three pairs of genes show microsynteny. Thus, intrachromosomal rearrange ments occur frequently in nematodes, limiting the likelihood of identifying orthologous genes of P.pacificus and C.elegans based on positional information within the two genomes.  相似文献   

14.
To understand the evolution of developmental processes, nonmodel organisms in the nematodes, insects, and vertebrates are compared with established model systems. Often, these comparisons suffer from the inability to apply sophisticated technologies to these nonmodel species. In the nematode Pristionchus pacificus, cellular and genetic analyses are used to compare vulva development to that of Caenorhabditis elegans. However, substantial changes in gene function between P. pacificus and C. elegans limit the use of candidate gene approaches in studying P. pacificus mutations. To facilitate map-based cloning of mutations in P. pacificus, we constructed a BAC-based genetic linkage map. A BAC library of 13,440 clones was generated and completely end sequenced. By comparing BAC end and EST sequences between the "wild-type" strain P. pacificus var. California and the polymorphic strain P. pacificus var. Washington, 133 single-stranded conformational polymorphisms were identified. These markers were tested on a meiotic mapping panel of 46 randomly picked F(2) animals after a cross of the two strains, providing the first genetic linkage map of P. pacificus. A mapping strategy using two selected markers per chromosome was devised and the efficiency of this approach was illustrated by the mapping of the Ppa-unc-1/Twitchin gene.  相似文献   

15.
《Current biology : CB》2022,32(8):1675-1688.e7
  1. Download : Download high-res image (196KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
18.

Background

The genetic tractability and the species-specific association with beetles make the nematode Pristionchus pacificus an exciting emerging model organism for comparative studies in development and behavior. P. pacificus differs from Caenorhabditis elegans (a bacterial feeder) by its buccal teeth and the lack of pharyngeal grinders, but almost nothing is known about which genes coordinate P. pacificus feeding behaviors, such as pharyngeal pumping rate, locomotion, and fat storage.

Methodology/Principal Findings

We analyzed P. pacificus pharyngeal pumping rate and locomotion behavior on and off food, as well as on different species of bacteria (Escherichia coli, Bacillus subtilis, and Caulobacter crescentus). We found that the cGMP-dependent protein kinase G (PKG) Ppa-EGL-4 in P. pacificus plays an important role in regulating the pumping rate, mouth form dimorphism, the duration of forward locomotion, and the amount of fat stored in intestine. In addition, Ppa-EGL-4 interacts with Ppa-OBI-1, a recently identified protein involved in chemosensation, to influence feeding and locomotion behavior. We also found that C. crescentus NA1000 increased pharyngeal pumping as well as fat storage in P. pacificus.

Conclusions

The PKG EGL-4 has conserved functions in regulating feeding behavior in both C. elegans and P. pacificus nematodes. The Ppa-EGL-4 also has been co-opted during evolution to regulate P. pacificus mouth form dimorphism that indirectly affect pharyngeal pumping rate. Specifically, the lack of Ppa-EGL-4 function increases pharyngeal pumping, time spent in forward locomotion, and fat storage, in part as a result of higher food intake. Ppa-OBI-1 functions upstream or parallel to Ppa-EGL-4. The beetle-associated omnivorous P. pacificus respond differently to changes in food state and food quality compared to the exclusively bacteriovorous C. elegans.  相似文献   

19.
Although it is increasingly affordable for emerging model organisms to obtain completely sequenced genomes, further in-depth gene function and expression analyses by RNA interference and stable transgenesis remain limited in many species due to the particular anatomy and molecular cellular biology of the organism. For example, outside of the crown group Caenorhabditis that includes Caenorhabditis elegans, stably transmitted transgenic lines in non-Caenorhabditis species have not been reported in this specious phylum (Nematoda), with the exception of Strongyloides stercoralis and Pristionchus pacificus. To facilitate the expanding role of P. pacificus in the study of development, evolution, and behavior, we describe here the current methods to use microinjection for making transgenic animals and gene knock down by RNAi. Like the gonads of C. elegans and most other nematodes, the gonads of P. pacificus is syncitial and capable of incorporating DNA and RNA into the oocytes when delivered by direct microinjection. Unlike C. elegans however, stable transgene inheritance and somatic expression in P. pacificus requires the addition of self genomic DNA digested with endonucleases complementary to the ends of target transgenes and coinjection markers. The addition of carrier genomic DNA is similar to the requirement for transgene expression in Strongyloides stercoralis and in the germ cells of C. elegans. However, it is not clear if the specific requirement for the animals' own genomic DNA is because P. pacificus soma is very efficient at silencing non-complex multi-copy genes or that extrachromosomal arrays in P. pacificus require genomic sequences for proper kinetochore assembly during mitosis. The ventral migration of the two-armed (didelphic) gonads in hermaphrodites further complicates the ability to inject both gonads in individual worms. We also demonstrate the use of microinjection to knockdown a dominant mutant (roller,tu92) by injecting double-stranded RNA (dsRNA) into the gonads to obtain non-rolling F(1) progeny. Unlike C. elegans, but like most other nematodes, P. pacificus PS312 is not receptive to systemic RNAi via feeding and soaking and therefore dsRNA must be administered by microinjection into the syncitial gonads. In this current study, we hope to describe the microinjection process needed to transform a Ppa-egl-4 promoter::GFP fusion reporter and knockdown a dominant roller prl-1 (tu92) mutant in a visually informative protocol.  相似文献   

20.
Evolutionary reconstruction of the natural history of an organism ultimately requires knowledge about the development, population genetics, ecology, and phylogeny of the species. Such investigations would benefit from studies of mutational processes because mutations are the source of natural variation. The nematode Pristionchus pacificus has been developed as a model organism in evolutionary biology by comparing its development with Caenorhabditis elegans. Pristionchus pacificus and related species are associated with scarab beetles, and their ecology and phylogeny are well known. More than 200 P. pacificus isolates from all over the world are available for this cosmopolitan species. We generated mutation accumulation (MA) lines in P. pacificus to study spontaneous mutation rates in the mitochondrial genome and compared mutation rate estimates with natural variation between nine representative isolates of the species. The P. pacificus mitochondrial genome is 15,955 bp in length and is typical for nematodes. Pristionchus pacificus has all known mitochondrial genes and contains an unusual suppressor transfer RNA (tRNA) for the codon UAA. This has most likely influenced the spectrum of observable mutations because 6 of 12 mutations found in the 82 MA lines analyzed are nonsense mutations that can be suppressed by the suppressor tRNA. The overall mutation rate in P. pacificus is 7.6 × 10?? per site per generation and is less than one order of magnitude different from estimates in C. elegans and Drosophila. Using this mutation rate estimate in a comparison of the mitochondrial genome of nine P. pacificus isolates, we calculate the minimum time to the most recent common ancestor at 10?-10? generations. The combination of mutation rate analysis with intraspecific divergence provides a powerful tool for the reconstruction of the natural history of P. pacificus, and we discuss the ecological implication of these findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号