首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Commercially available cardiac pacemakers and implantable cardioverters/defibrillators (ICD) predominantly use the intracardiac derived electrocardiogram (ECG) for detection of arrhythmias. To achieve an automatic control of the heart frequency in accordance with cardiovascular strain and an improved detection of life-threatening arrhythmias, it is desirable to monitor the heart by an input signal correlated with the hemodynamic state. One possible approach to derive such a signal, is to measure the inotropy (mechanical contraction strength of the heart muscle). For this purpose an optoelectronic measurement system has been designed. The fundamental function of the system has been shown in earlier investigations using an isolated beating pig heart. In this paper further results showing the correlation of the fiberoptic sensor signal with the left ventricular stroke volume are presented. To make the system useful for implantable devices, further improvements with regard to power consumption and signal quality were achieved.  相似文献   

2.
Clinical data analysis of 83 patients with implantable cardioverter-defibrillators (ICDs) for sudden cardiac death (SCD) primary prevention has been done. We revealed 5 parameters associated with the detection of life-threatening ventricular arrhythmias. These parameters formed the basis for constructing a logistic regression model. The model makes it possible to obtain the probability of occurrence of a specific event depending on the severity of the predictive parameters and the degree of its influence (risk of true ventricular arrhythmias detection). Estimating the potential risk of the life-threatening arrhythmias, individual programming options are required in implantable cardioverter-defibrillators (ICDs) to reduce the amount of unnecessary electrotherapy, as well as more accurate monitoring of the patient's drug therapy.  相似文献   

3.
New developments and expanding indications have resulted in a significant increase in the number of patients with pacemakers and internal cardioverterdefibrillators (ICDs). Because of its unique capabilities, magnetic resonance imaging (MRI) has become one of the most important imaging modalities for evaluation of the central nervous system, tumours, musculoskeletal disorders and some cardiovascular diseases. As a consequence of these developments, an increasing number of patients with implanted devices meet the standard indications for MRI examination. Due to the presence of potential life-threatening risks and interactions, however, pacemakers and ICDs are currently not approved by the Food and Drug Administration (FDA) for use in an MRI scanner. Despite these limitations and restrictions, a limited but still growing number of studies reporting on the effects and safety issues of MRI and implanted devices have been published. Because physicians will be increasingly confronted with the issue of MRI in patients with implanted devices, this overview is given. The effects of MRI on an implanted pacemaker and/or ICDs and vice versa are described and, based on the current literature, a strategy for safe performance of MRI in these patients is proposed. (Neth Heart J 2010;18:31-7.)  相似文献   

4.
Certain low-frequency magnetic fields cause interference in implantable medical devices. Electromagnetic compatibility (EMC) standards prescribe injecting voltages into a device under evaluation to simplify testing while approximating or simulating real-world exposure situations to low-frequency magnetic fields. The EMC standard ISO 14117:2012, which covers implantable pacemakers and implantable cardioverter defibrillators (ICDs), specifies test levels for the bipolar configuration of sensing leads as being one-tenth of the levels for the unipolar configuration. The committee authoring this standard questioned this testing level difference and its clinical relevance. To evaluate this issue of EMC test levels, we performed both analytical calculations and computational modeling to determine a basis for this difference. Analytical calculations based upon Faraday''s law determined the magnetically induced voltage in a 37.6-cm lead. Induced voltages were studied in a bipolar lead configuration with various spacing between a distal tip electrode and a ring electrode. Voltages induced in this bipolar lead configuration were compared with voltages induced in a unipolar lead configuration. Computational modeling of various lead configurations was performed using electromagnetic field simulation software. The two leads that were insulated, except for the distal and proximal tips, were immersed in a saline-conducting media. The leads were parallel and closely spaced to each other along their length. Both analytical calculations and computational modeling support continued use of a one-tenth amplitude reduction for testing pacemakers and ICDs in bipolar mode. The most recent edition of ISO 14117 includes rationale from this study.

Implantable cardiac pacemakers are used in millions of patients to regulate or reproduce normal heart rhythm. Patients are candidates for a pacemaker when the heart''s natural rhythm is too slow or if a conduction block is present in the heart''s electrical system. An implantable cardioverter defibrillator (ICD) functions like a pacemaker, with the added function of being able to deliver a strong electrical shock to treat life-threatening arrhythmias. Both pacemakers and ICDs have lead(s) that extend from the metallic case under the skin, usually in the pectoral region, to the interior of the heart. Each lead has a distal tip electrode at the far end and one or more ring electrodes spaced a small distance closer to the metallic case (Figure 1). These electrodes are placed in one or more chambers of the heart. The implanted devices detect the heart''s intrinsic electrical activity via these electrodes to determine what stimulation to deliver. A voltage can be sensed between the tip electrode and the metallic case (unipolar) or between the tip and a ring electrode (bipolar). The choice of sensing is up to the clinician.Open in a separate windowFigure 1.Tip and ring electrodes are used for a bipolar configuration. For unipolar configuration, only the tip electrode is used.Pacemakers and ICDs are continuously sensing the heart''s electrical activity and are susceptible to electromagnetic interference (EMI), which may be interpreted as cardiac signals. EMI is a disturbance generated by an electrical source, such as a cell phone. EMI to pacemakers and ICDs is well known.1 Because pacemakers and ICDs sense frequencies between 1 and 500 Hz, they are most susceptible to low-frequency magnetic fields. The Food and Drug Administration recognizes ISO 14117:20192 as describing an electromagnetic compatibility (EMC) test method for pacemakers and ICDs.The Active Implants Joint Working Group 1 (ISO/TC 150 SC 6 JWG 1)3 is the standards group that authors the EMC standard ISO 14117. While writing the second edition of this standard, the group questioned the basis for the material published in the first edition. One topic of discussion was the requirement and lack of rationale in determining the appropriate test levels for bipolar lead configurations. The test levels described for a unipolar configuration are reasonably supported based partly on the reference levels in the European Commission Recommendation 5194 under certain assumptions of magnetic fields inducing a voltage in leads. However, the normative requirements of ISO 14117:2012 simply state, “Bipolar differential mode performance shall be tested using the test signal reduced to one-tenth amplitude” (referring to one-tenth of the test signal specified for devices with unipolar leads).5 The only rationale provided in ISO 14117:2012 is as follows: “Because of the close proximity of tip and ring electrodes, the applicable test signal is reduced to 10% of the common mode test signal amplitude.” No documented scientific basis exists for this 90% reduction for bipolar differential tests.The objectives of the current study were to determine the appropriate test levels below 10 MHz for the bipolar lead configuration and to provide a clear rationale for those levels. All implantable pacemakers and ICDs are tested to the ISO 14117 standard, and the large majority that are implanted are programmed to a bipolar lead configuration. The current study sought to improve understanding regarding whether implantable pacemakers and ICDs are tested to an adequate level.  相似文献   

5.
Bruce L Wilkoff 《Trials》2001,2(5):215-3
All of the prospective multicenter trials that support the use of implantable defibrillators have used single chamber pacemakers/implantable cardiovertor defibrillators (ICDs). Despite the significantly increased cost of dual chamber pacemaker/ICD devices and the lack of outcome data, these devices accounted for approximately two-thirds of the ICDs implanted in the United States during the 12 months ending April 2001. Dual chamber pacemaker trials have not provided data that would support this trend, but the high incidence of atrial fibrillation, bradycardia, and congestive heart failure, as comorbid conditions, suggest that the situation could be different in the defibrillator patient population. The DAVID (Dual Chamber and VVI Implantable Defibrillator) trial is designed to measure the incremental benefit of dual chamber pacemaker/ICDs.  相似文献   

6.
In recent decades, implantable cardioverter defibrillators (ICDs) have improved substantially, becoming the treatment of choice for patients at high risk of life-threatening arrhythmias. Nevertheless, inappropriate shock therapy for non-ventricular arrhythmias is still a problem. Extending the ICD battery lifetime demands very low power consumption, which is obtained at very low microprocessor clock frequencies. Currently, some high-performance algorithms remain beyond the computational capabilities of ICDs. Future ICDs with higher computing power will permit the implementation of computationally intensive algorithms, enhancing the discrimination performance and preventing inappropriate shock therapies. An ICD algorithm status review is presented from the point of view of signal processing techniques and their computational costs. Several examples of discrimination algorithms with increasing computational cost are analyzed. Whereas some of them are already used in commercial ICDs, other algorithms cannot be implemented yet in current ICDs. A solution based on dynamic adaptation of microprocessor power consumption to meet algorithm computational requirements is proposed. This solution allows implementation of complex discrimination algorithms in ICDs without significantly increasing the power consumption.  相似文献   

7.
Within recent years, much scientific attention has been devoted to adults with congenital heart disease (CHD) and probable complications. Congenitally corrected transposition of the great arteries (CCTGA) is a rare, complex form of congenital heart defects. CCTGA is characterized by atrioventricular (AV) and ventriculoarterial (VA) discordance and, hence, by a physiologically normal direction of blood flow. The development of complete AV block and global ventricular dysfunction has been identified as the cause of cardiac death. Although the development of arrhythmias represents a major cause of morbidity and mortality in patients with CHD, the account of all implantations of pacemakers and implantable cardioverter defibrillators (ICD) is less than one percent. This paper presents a case of CCTGA with severe rhythm disorders, discusses probable treatment options, and offers indications of ICD implantation in patients with CHD.  相似文献   

8.
Magnetic resonance (MR) imaging has unparalleled soft-tissue imaging capabilities. The presence of devices such as pacemakers and implantable cardioverter/defibrillators (ICDs), however, is historically considered a contraindication to MR imaging. These devices are now smaller, with less magnetic material and improved electromagnetic interference protection. This review summarizes the potential hazards of the device-MR environment interaction, and presents updated information regarding in-vivo and in-vitro experiments. Recent reports on patients with implantable pacemakers and ICDs who underwent MR scan shows that under certain conditions patients with these implanted systems may benefit from this imaging modality. The data presented suggests that certain modern pacemaker and ICD systems may indeed be MR safe. This may have major clinical implications on current imaging practice.  相似文献   

9.
Sudden cardiac death (SCD) due to various cardiomyopathies is currently prevented by the implantation of an automated cardioverter/defibrillator (ICD). ICD impalntation in patients who are not survivors of SCD, or have not suffered potentially lethal ventricular arrhythmias, are based on the presence of cardiomyopathy with a reduced left ventricular ejection fraction. The bulk of patients who are considered suitable for an ICD implantation and receive such devices, do not experience device therapy shocks at follow-up ("false positives"), thus creating a climate of uncertainty among patients and physicians about the soundness of our current eligibility criteria for ICDs. In addition the cost of inappropriate ICDs is staggering, and the undue exposure of "false positive" patients to complications, and hardships is disconcerting. T-wave alternans (TWA) has emerged as a possible "risk detection of SCD" technology, but its reproducibility has not been tested. Peripheral edema (extracardiac) or other cardiac mechanisms, unrelated to the degree of SCD risk, alter the amplitude, and other attributes, of the T-waves. Since TWA may be T-wave amplitude-, or other T-wave attributes-dependent (this is still a speculation), a need may be emerging for its correction by the T-wave amplitude (TWA index); such an index may enhance the reproducibility, and evaluate the true sensitivity, specificity and predictive accuracy of the TWA in detecting future victims of SCD.  相似文献   

10.
To prevent sudden cardiac death of patients who are at risk from long standing tachyarrhythmia the implantable cardioverter defibrillator (ICD) is the first choice therapy. ICDs use a range of electrostimuli up to defibrillation, which is a non synchronous high energy shock, whereas cardioversion is synchronous with the ECG. In order to know when and how to react, a detection algorithm, which analyses an intracardial electrocardiogram (ECG) and classifies the heart rhythm, is implemented in every ICD. All detection algorithms use the heart rate to classify the different heart rhythms roughly. If a tachycardia is detected, it is important to discriminate between a ventricular tachycardia, which is life threatening and a supraventricular tachycardia, which is much less threatening. To be able to make this distinction the detection algorithms analyse the behaviour of the heart cycle intervals, the ECG-morphology or in addition to the ventricular ECG, an atrial ECG. In this paper morphological algorithms will be evaluated and newly developed algorithms will be presented. Recent algorithms use the mathematical wavelet theory. The evaluation shows that these get better results than all but one of the simpler classical morphological algorithms. A new wavelet based algorithm, developed by the authors, exhibits the best detection results.  相似文献   

11.
Abrupt changes in heart rate, particularly short-long-short sequences in the ventricular cycle length (CL), might precede initiation of ventricular tachycardia/fibrillation (VT/VF). These changes may be facilitated or caused by pacing activity in patients with pacemakers or implantable-cardioverter defibrillators (ICDs). We describe a patient with two episodes of acquired VT precipitated by short-long-short sequences and diagnosed from the ICD recordings. In such cases, the knowledge of the device parameters is extremely important for a correct diagnosis and management.  相似文献   

12.
《IRBM》2020,41(4):185-194
Cardiac arrhythmia is a condition when the heart rate is irregular either the beat is too slow or too fast. It occurs due to improper electrical impulses that coordinates the heart beats. Sudden cardiac death may occurs due to some dangerous arrhythmias conditions. Hence the main objective of the electrocardiogram (ECG) analysis is to detect the life-threatening arrhythmias accurately for appropriate treatment in order to save life. Since the last decades, several methods were reported for automatic ECG beat classifications. In this work, we present a systematic review of the current state-of-the-art methods used to detect cardiac arrhythmia using on ECG signals. It includes the signal decomposition, feature extraction and machine learning approaches used for automatic detection and decision making process. The articles covers the pre-processing, detection of QRS complex, feature extraction and classification of ECG beats. Based on the past studies, it is understood that the automated approach using computer-aided decision making process is highly required for real-time detection of cardiac arrhythmias. The advantages and limitations of different methods are discussed and also the future scopes is highlighted in the process of effective detection of cardiac arrhythmias. This study could be beneficial for researchers to analyze the existing state-of-art techniques used in detection of arrhythmia conditions.  相似文献   

13.
M. D. Rosengarten  R. C. Chiu 《CMAJ》1983,128(12):1377-1381
Artificial pacing of the heart has evolved rapidly over the last 20 years; the physician can now implant "physiologic" pacemakers that preserve the natural order of atrial and ventricular systole. The commonly used pacemakers that pace only the ventricle can induce dizziness, fatigue and syncope and increase congestive heart failure. Physiologic pacemakers can eliminate many of these side effects, but they are more expensive, can be less durable and may induce arrhythmias. Physiologic pacing can provide the greatest benefit and cost-effectiveness when the particular functions of the device are matched to the specific needs of the patient.  相似文献   

14.
A commercially available magnetic therapy system, designed for clinical application as well as for private use without medical supervision, was examined with respect to its potential for causing electromagnetic interference with implantable pacemakers (PMs) and automatic implantable cardioverter defibrillators (AICDs). A sample of 15 PMs and 5 AICDs were experimentally investigated. Each of the implants was realistically positioned in a homogeneous, electrically passive torso phantom and exposed to the magnetic fields of the system's applicators (whole body mat, cushion, and bar applicator). The detection thresholds of the implants were programmed to maximum sensitivity and both unipolar as well as bipolar electrode configurations were considered. The evaluation of possible interferences was derived from the internal event storages and pacing statistics recorded by the implants during exposure. Any "heart activity" recorded by the implants during exposure was interpreted as a potential interference, because the implant obviously misinterpreted the external interference signal as a physiological signal. Only cases without any recorded "heart activity" and with nominal pacing rates (as expected from the program parameter settings) of the implants were rated as "interference-free." Exposure to the whole body mat (peak magnetic induction up to 265 microT) did not show an influence on PMs and AICD in any case. The cushion applicator at the highest field intensity (peak magnetic induction up to 360 microT) led to atrial sensing defects in four PM models with unipolar electrode configuration. Under bipolar electrode configuration no disturbances occurred. The bar applicator led to sensing problems and consecutively reduced pacing rates in all tested PM models under unipolar electrode configuration and maximum field intensity (peak magnetic induction up to 980 microT). Bipolar electrode configuration resolved the problem. The investigated AICDs did not show malfunctions under any investigated condition. In conclusion, the examined PEMF therapy system did not interfere with the investigated implantable cardiac devices with bipolar electrode configuration. However, unipolar electrode configuration in pacemakers seems to be potentially hazardous during application of the examined PEMF therapy system.  相似文献   

15.
Fetal electrocardiogram (FECG) signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system.  相似文献   

16.

Background

Due to an ageing population and demographic changes worldwide, a higher prevalence of heart disease is forecasted, which causes an even higher demand for cardiac implants in future. The increasing high incidence of clinical adverse events attributed especially to high-risk medical devices has led an advocated change from many stakeholders. This holds especially true for devices like cardiac implants, with their high-risk nature and high complication rates associated with considerable mortality, due to their frequent use in older populations with frequent co-morbidities. To ensure patients’ safety, the objective of this study is to analyze different cardiac implants recall reasons and different recall systems, based on an overview of the recalls of cardiac implant medical devices in the last decade. On the basis of the results from this structured analysis, this study provides recommendations on how to avoid such recalls from a manufacturer perspective, as well as how to timely react to an adverse event from a post-surveillance system perspective.

Methods and Findings

A systematic search of cardiac implant recalls information has been performed in the PubMed, ScienceDirect and Scopus databases, as well as data sources in regulatory authorities from 193 UN Member States. Data has been extracted for the years 2004-2014 with the following criteria applied: cardiac implant medical device recalls and reasons for recall, associated harm or risk to patients. From the data sources described above, eleven regulatory authorities and 103 recall reports have been included in this study. The largest cardiac implant categories include ICDs 40.8%, pacemakers 14.5% and stents 14.5%. Regarding the recall reasons, the majority of reports were related to device battery problems (33.0%) and incorrect therapy delivery (31.1%). From a total of 103 recall reports, five reported death and serious injuries. Our review highlights weaknesses in the current cardiac implant recall system, including data reporting and management issues and provides recommendations for the improvement of safety information and management.

Conclusion

Due to the mortality associated with the nature of cardiac implants, the traceability and transparency of safety hazards information is crucial. By a structured analysis of recall reasons and their efficient management, important knowledge is gained to inform an effective safety-reporting system for monitoring the safety of cardiac implanted patients, ideally by building up cardiac implant registries worldwide in the future.  相似文献   

17.
The final stage of a system for automatic monitoring of cardiac arrhythmias is the diagnosis of the rhythm or arrhythmia present in the patient during the monitoring process. In this paper we approach the detection process by means of the analysis of the electrocardiographic signal (ECG) on a surface lead produced by those arrhythmias which can be recognized by identifying specific beat sequences and taking into account contextual information, mainly rhythm information. We have developed a diagnosis process for arrhythmias which uses a fuzzy classification of beats according to their etiology or focus of origin. The process we describe permits a more adequate consideration by the user of the arrhythmias diagnosed by the system, mainly in those cases in which the information derived from ECG analysis is not determinant.  相似文献   

18.
Serious workings of the funny current   总被引:6,自引:0,他引:6  
  相似文献   

19.
Advances in pacemaker technology in the 1980s have generated a wide variety of complex multiprogrammable pacemakers and pacing modes. The aim of the present review is to address the different rate responsive pacing modalities presently available in respect to physiological situations and pathological conditions. Rate adaptive pacing has been shown to improve exercise capacity in patients with chronotropic incompetence. A number of activity and metabolic sensors have been proposed and used for rate control. However, all sensors used to optimize pacing rate metabolic demands show typical limitations. To overcome these weaknesses the use of two sensors has been proposed. Indeed an unspecific but fast reacting sensor is combined with a more specific but slower metabolic one. Clinical studies have demonstrated that this methodology is suitable to reproduce normal sinus behavior during different types and loads of exercise. Sensor combinations require adequate sensor blending and cross checking possibly controlled by automatic algorithms for sensors optimization and simplicity of programming. Assessment and possibly deactivation of some automatic functions should be also possible to maximize benefits from the dual sensor system in particular conditions. This is of special relevance in patient whose myocardial contractility is limited such as in subjects with implantable defibrillators and biventricular pacemakers. The concept of closed loop pacing, implementing a negative feedback relating pacing rate and the control signal, will provide new opportunities to optimize dual-sensors system and deserves further investigation. The integration of rate adaptive pacing into defibrillators is the natural consequence of technical evolution.  相似文献   

20.
《IRBM》2022,43(5):422-433
BackgroundElectrocardiogram (ECG) is a method of recording the electrical activity of the heart and it provides a diagnostic means for heart-related diseases. Arrhythmia is any irregularity of the heartbeat that causes an abnormality in the heart rhythm. Early detection of arrhythmia has great importance to prevent many diseases. Manual analysis of ECG recordings is not practical for quickly identifying arrhythmias that may cause sudden deaths. Hence, many studies have been presented to develop computer-aided-diagnosis (CAD) systems to automatically identify arrhythmias.MethodsThis paper proposes a novel deep learning approach to identify arrhythmias in ECG signals. The proposed approach identifies arrhythmia classes using Convolutional Neural Network (CNN) trained by two-dimensional (2D) ECG beat images. Firstly, ECG signals, which consist of 5 different arrhythmias, are segmented into heartbeats which are transformed into 2D grayscale images. Afterward, the images are used as input for training a new CNN architecture to classify heartbeats.ResultsThe experimental results show that the classification performance of the proposed approach reaches an overall accuracy of 99.7%, sensitivity of 99.7%, and specificity of 99.22% in the classification of five different ECG arrhythmias. Further, the proposed CNN architecture is compared to other popular CNN architectures such as LeNet and ResNet-50 to evaluate the performance of the study.ConclusionsTest results demonstrate that the deep network trained by ECG images provides outstanding classification performance of arrhythmic ECG signals and outperforms similar network architectures. Moreover, the proposed method has lower computational costs compared to existing methods and is more suitable for mobile device-based diagnosis systems as it does not involve any complex preprocessing process. Hence, the proposed approach provides a simple and robust automatic cardiac arrhythmia detection scheme for the classification of ECG arrhythmias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号