首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new physiological role for veratryl alcohol in fungi important in the biodegradation of the lignified plant cell wall is presented. Botryosphaeria sp., grown on starch, pectin, cellulose or xylan produced amylase, pectinase, cellulase, xylanase and laccase, whereas glucose and xylose repressed the synthesis of cellulase and xylanase, but not laccase. When cultured on each of these substrates in the presence of veratryl alcohol, laccase activity increased but the activities of amylase, pectinase, cellulase and xylanase significantly decreased. Basal medium containing softwood kraft lignin in the presence of veratryl alcohol induced laccases above constitutive levels. Ethyl alcohol also stimulated laccase production.  相似文献   

2.
Many white rot fungi are able to produce de novo veratryl alcohol, which is known to be a cofactor involved in the degradation of lignin, lignin model compounds, and xenobiotic pollutants by lignin peroxidase (LiP). In this study, Mn nutrition was shown to strongly influence the endogenous veratryl alcohol levels in the culture fluids of N-deregulated and N-regulated white rot fungi Bjerkandera sp. strain BOS55 and Phanerochaete chrysosporium BKM-F-1767, respectively. Endogenous veratryl alcohol levels as high as 0.75 mM in Bjerkandera sp. strain BOS55 and 2.5 mM in P. chrysosporium were observed under Mn-deficient conditions. In contrast, veratryl alcohol production was dramatically decreased in cultures supplemented with 33 or 264 (mu)M Mn. The LiP titers, which were highest in Mn-deficient media, were shown to parallel the endogenous veratryl alcohol levels, indicating that these two parameters are related. When exogenous veratryl alcohol was added to Mn-sufficient media, high LiP titers were obtained. Consequently, we concluded that Mn does not regulate LiP expression directly. Instead, LiP titers are enhanced by the increased production of veratryl alcohol. The well-known role of veratryl alcohol in protecting LiP from inactivation by physiological levels of H(inf2)O(inf2) is postulated to be the major reason why LiP is apparently regulated by Mn. Provided that Mn was absent, LiP titers in Bjerkandera sp. strain BOS55 increased with enhanced fungal growth obtained by increasing the nutrient N concentration while veratryl alcohol levels were similar in both N-limited and N-sufficient conditions.  相似文献   

3.
The white rot fungus Bjerkandera sp. strain BOS55 produces veratryl, anisyl, 3-chloroanisyl, and 3,5-dichloroanisyl alcohol and the corresponding aldehydes de novo from glucose. All metabolites are produced simultaneously with the extracellular ligninolytic enzymes and have an important physiological function in the fungal ligninolytic system. Both mono- and dichlorinated anisyl alcohols are distinctly better substrates for the extracellular aryl alcohol oxidases than veratryl alcohol. The aldehydes formed are readily recycled by reduction by washed fungal mycelium, thus creating an extracellular H2O2 production system regulated by intracellular enzymes. Lignin peroxidase does not oxidize the chlorinated anisyl alcohols either in the absence or in the presence of veratryl alcohol. It was therefore concluded that the chlorinated anisyl alcohols are well protected against the fungus's own aggressive ligninolytic enzymes. The relative amounts of veratryl alcohol and the chlorinated anisyl alcohols differ significantly according to the growth conditions, indicating that production of veratryl alcohol and the production of the (chlorinated) anisyl metabolites are independently regulated. We conclude that the chlorinated anisyl metabolites biosynthesized by the white rot fungus Bjerkandera sp. strain BOS55 can be purposefully produced for ecologically significant processes such as lignin degradation.  相似文献   

4.
The mechanism for the production of hydroxyl radical by lignin peroxidase from the white rot fungus Phanerochaete chrysosporium was investigated. Ferric iron reduction was demonstrated in reaction mixtures containing lignin peroxidase isozyme H2 (LiPH2), H2O2, veratryl alcohol, oxalate, ferric chloride, and 1,10-phenanthroline. The rate of iron reduction was dependent on the concentration of oxalate and was inhibited by the addition of superoxide dismutase. The addition of ferric iron inhibited oxygen consumption in reaction mixtures containing LiPH2, H2O2, veratryl alcohol, and oxalate. Thus, the reduction of ferric iron was thought to be dependent on the LiPH2-catalyzed production of superoxide in which veratryl alcohol and oxalate serve as electron mediators. Oxalate production and degradation in nutrient nitrogen-limited cultures of P. chrysosporium was also studied. The concentration of oxalate in these cultures decreased during the period in which maximum lignin peroxidase activity (veratryl alcohol oxidation) was detected. Electron spin resonance studies using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide were used to obtain evidence for the production of the hydroxyl radical in reaction mixtures containing LiPH2, H2O2, veratryl alcohol, EDTA, and ferric chloride. It was concluded that the white rot fungus might produce hydroxyl radical via a mechanism that includes the secondary metabolites veratryl alcohol and oxalate. Such a mechanism may contribute to the ability of this fungus to degrade environmental pollutants.  相似文献   

5.
Several aromatic compounds increased initial lignin degradation rates in cultures of Phanerochaete chrysosporium. This activation was connected to increased H2O2 production and glucose oxidation rates. Veratryl alcohol, a natural secondary metabolite of P. chrysosporium, also activated the lignin-degrading system. In the presence of added veratryl alcohol the ligninolytic system appeared 6–8 h earlier than in reference cultures. This effect was only seen when lignin was added after the primary growth was completed because lignin itself also caused earlier appearance of the degradative system. In cultures which received no added lignin or veratryl alcohol the ligninolytic activity only appeared once the alcohol started to accumulate. The degradation patterns of veratryl alcohol and lignin were similar. The activity levels of lignin degradation and glucose oxidation could be regulated by veratryl alcohol concentration. It is suggested that either veratryl alcohol itself or a metabolite derived from it is actually responsible for the low levels of ligninolytic activity in glucose grown cultures.  相似文献   

6.
Comparison of two assay procedures for lignin peroxidase   总被引:1,自引:0,他引:1  
The most widely accepted assay for detecting lignin peroxidase, based on the oxidation of veratryl alcohol to veratraldehyde, suffers from some drawbacks. At 310 nm, the wavelength at which the assay is performed, some other materials like lignins, quinonic compounds and aromatics also exhibit strong absorbance thus interfering with the estimation when present in the media. The present study reports the lignin peroxidase production by some white rot fungi under different nutritional conditions. The veratryl alcohol oxidation assay procedure for lignin peroxidase has been compared with another method based on the oxidation of the dye azure B involving absorbance measurements in the visible range. The latter method proved to be much more advantageous over the veratryl alcohol oxidation method, in media supplemented with malt extract, lignin preparations and agricultural residues. The enzyme production by veratryl alcohol assay could be detected only in mineral salts broth. By the azure B assay the enzyme activity was detected in all the media tested. The supplements gave varied response in different media. Veratryl alcohol enhanced the enzyme production in malt extract broth and mineral salts malt extract broth. Among the lignin preparations Indulin AT increased the lignin peroxidase titres from 2 to 20 fold in different fungi. Similarly, wheat straw supplemented in mineral salts broth and malt extract broth, separately, strongly stimulated the lignin peroxidase production. The above studies revealed that azure B assay may act as a substitute or equivalent method.  相似文献   

7.
Botryosphaeria sp. produced two laccases (PPO-I and PPO-II) constitutively, whose titers were enhanced by veratryl alcohol. The effect of veratryl alcohol and yeast extract concentration, time of cultivation and agitation speed were evaluated by factorial analysis to select variables for optimizing the production of laccases. Maximal laccase production was determined using a second-order central-composite design and analyzed by the response-surface method. Veratryl alcohol concentration and time of cultivation were the main factors increasing laccase production, while yeast extract had no influence within the range 0.2–2.0% w/v. Response-surface analysis showed that 30.4 mM veratryl alcohol, for 4.5 days at 28°C and 180 rpm, were the optimal conditions to maximize PPO-I production, while conditions for maximal PPO-II production occurred within a range of 28–35 mM veratryl alcohol over a growth period of 4–5.5 days. The model predicted 5.6 U ml−1 for PPO-I, and 0.6–1.0 U ml−1 for PPO-II, which agreed with the experimentally observed results.  相似文献   

8.
The cathodic reduction of oxygen to hydrogen peroxide, the current efficiency for the production of H2O2 and the oxidation of veratryl alcohol with an in situ generated hydrogen peroxide‐lignin peroxidase complex were studied in this paper. The complex was prepared by utilizing a novel preparation technique in an electrochemical reactor. The oxidation of veratryl alcohol (VA; 3,4‐dimethoxybenzyl alcohol) was carried out with or without lignin peroxidase under an electric field. The redox properties of veratryl alcohol on a carbon electrode in the presence of lignin peroxidase have been investigated using cyclic voltammetry. The kinetics of veratryl alcohol oxidation in an electrochemical reactor were compared to the oxidation when hydrogen peroxide was supplied externally. Further, the oxidation of veratryl alcohol by lignin peroxidase was optimized in terms of enzyme dosage, pH, and electrical potential. The novel electroenzymatic method was found to be effective using in situ generated hydrogen peroxide for the oxidation of veratryl alcohol by lignin peroxidase.  相似文献   

9.
J L Popp  B Kalyanaraman  T K Kirk 《Biochemistry》1990,29(46):10475-10480
Veratryl alcohol (3,4-dimethoxybenzyl alcohol) appears to have multiple roles in lignin degradation by Phanerochaete chrysosporium. It is synthesized de novo by the fungus. It apparently induces expression of lignin peroxidase (LiP), and it protects LiP from inactivation by H2O2. In addition, veratryl alcohol has been shown to potentiate LiP oxidation of compounds that are not good LiP substrates. We have now observed the formation of Mn3+ in reaction mixtures containing LiP, Mn2+, veratryl alcohol, malonate buffer, H2O2, and O2. No Mn3+ was formed if veratryl alcohol or H2O2 was omitted. Mn3+ formation also showed an absolute requirement for oxygen, and oxygen consumption was observed in the reactions. This suggests involvement of active oxygen species. In experiments using oxalate (a metabolite of P. chrysosporium) instead of malonate, similar results were obtained. However, in this case, we detected (by ESR spin-trapping) the production of carbon dioxide anion radical (CO2.-) and perhydroxyl radical (.OOH) in reaction mixtures containing LiP, oxalate, veratryl alcohol, H2O2, and O2. Our data indicate the formation of oxalate radical, which decays to CO2 and CO2.-. The latter reacts with O2 to form O2.-, which then oxidizes Mn2+ to Mn3+. No radicals were detected in the absence of veratryl alcohol. These results indicate that LiP can indirectly oxidize Mn2+ and that veratryl alcohol is probably a radical mediator in this system.  相似文献   

10.
The ascomycete, Botryosphaeria sp, produced two extracellular constitutive laccases (PPO-I and PPO-II) active toward the substrates: 2, 2(1)-azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid) [ABTS], and 2,6-dimethoxyphenol (DMP), respectively. The production of both laccases increased when the fungal isolate was grown in the presence of veratryl alcohol, and resulted in optimal laccase production (100- and 25- fold, respectively) at 40 mM. The effect of aeration on growth and laccase production was studied in baffled flasks, and showed that aeration of the cultures increased the production of both enzymes 4-5 fold in the presence of veratryl alcohol. Both laccases were susceptible to inhibition by azide, acetate and chloride anions. Veratryl alcohol inhibited the laccase-catalyzed polymerization of DMP. Growing cultures of Botryosphaeria sp. produced an exopolysaccharide of the beta-glucan type whose synthesis was depressed when grown in the presence of veratryl alcohol.  相似文献   

11.
Summary A cultivation method using carrierbound mycelium was developed for the production of lignin-modifying enzymes by Phlebia radiata. Laccase and lignin peroxidase were produced in batch and semi-continuous cultivations. Laccase activity was clearly enhanced by veratryl alcohol. The presence of both veratryl alcohol and Tween 80 was required for lignin peroxidase production in submerged cultivations. During the course of the semi-continuous cultivations production of lignin peroxidase activity increased fourfold compared with static cultivations.  相似文献   

12.
The mineralization rate of LC-[1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] (DDT) was reduced by 90% on the 18th day in fungal cultures of Phanerochaete chrysosporium in the presence of 8 mM ethylenediamine tetraacetic acid (EDTA). In the presence of 8 mM N-N-N'-N'-tetramethylenediamine (TEMED), the mineralization rate of 14C-DDT was reduced by 80%. In the presence of 2 mM or 10 mM EDTA, 95% inhibition of lignin peroxidase (LiP) mediated veratryl alcohol oxidase activity and 97% inhibition of LiP mediated iodide oxidase activity occurred. TEMED caused 79% inhibition of veratryl alcohol oxidase activity and 92% inhibition of iodide oxidase activity when the amount used was 2 mM and 10 mM, respectively. In the presence of Zn(II) with slight molar excess of the EDTA concentration, reversed the EDTA mediated non-competitive inhibition of LiP catalyzed veratryl alcohol or iodide oxidation, Zn(II) also reversed the inhibition of LiP catalyzed veratryl alcohol oxidase activity caused by chelators other than EDTA and TEMED. In addition to Zn(II), several other metal ions also relieved EDTA mediated inhibition of veratryl alcohol and iodide oxidase activity catalyzed by LiP. The ability of veratryl alcohol to inhibit iodide oxidation catalyzed by LiP showed that veratryl alcohol could inhibit LiP mediated iodide oxidase activity. Increasing the concentration of iodide was also shown to inhibit veratryl alcohol oxidation. Kinetic analysis showed that the reaction was competitive inhibition.  相似文献   

13.
The mechanism of inhibition of the veratryl alcohol oxidase activity of lignin peroxidase H2 (LiPH2) by EDTA was investigated. It was found that EDTA was decarboxylated and that cytochrome c, nitro blue tetrazolium, ferric iron, and molecular oxygen were reduced in a reaction mixture containing LiPH2, H2O2, veratryl alcohol, and EDTA. The reductive activity observed with LiPH2 followed first order kinetics with respect to the concentration of EDTA. Stoichiometry studies showed that in the presence of sufficient EDTA, 1.7 mol of ferric iron were reduced per mole of H2O2 added to the reaction mixture. Superoxide- and EDTA-derived radicals were detected by ESR spin trapping upon incubation of LiPH2 with H2O2, veratryl alcohol, and EDTA. The Km values of veratryl alcohol and H2O2 remained the same for both the oxidative and reductive activities of LiPH2. Reductive activity was also observed with LiPH2 and EDTA using other free radical mediators in the place of veratryl alcohol, such as 1,4-dimethoxybenzene, 1,2,3- and 1,2,4-trimethoxybenzenes, and 1,2,4,5-tetramethoxybenzene. EDTA reduced the cation radical of 1,2,4,5-tetramethoxybenzene formed by LiPH2 in the presence of H2O2. Hence, it is proposed that the apparent inhibition of the veratryl alcohol oxidase activity of LiPH2 by EDTA is due to the reduction of the veratryl alcohol cation radical intermediate back to veratryl alcohol by EDTA. The reduction of cytochrome c, nitro blue tetrazolium, ferric ion, and molecular oxygen appears to be mediated by the EDTA radical formed by reduction of the veratryl alcohol cation radical.  相似文献   

14.
The effect of several laccase activity activators,such as ethanol (novel activator), veratryl alcohol, melanin production and aeration level, on the laccase production by Trametes versicolor (CBS100.29) was investigated. The microorganism was cultivated on nylon sponge, functioning as a physical support on which the mycelium was bound. The cultures with veratryl alcohol showed maximum laccase and manganese‐dependent peroxidase (MnP) activities of 238 U/l and 125 U/l, respectively. The laccase activity found is about two times higher than that attained in the control cultures. On the contrary, MnP activity did not appear to be influenced by the addition of this alcohol. Ethanol‐supplemented cultures led to maximum laccase and MnP activity levels of about 102 U/l and 101 U/l, respectively. These activities were approx. 40% lower than those achieved in the reference cultures. The decolourization of the polymeric dye Poly R‐478 by the above‐mentioned cultures was also investigated. A percentage of biological decolourization of around 90% was achieved with control and veratryl alcohol‐supplemented cultures, whereas with ethanol‐supplemented cultures a slightly lower percentage of around 85% was reached after seven days of dye incubation.  相似文献   

15.
木质索降解本质上是氧化反应,参与木质素降解的酶都是非专一性的,目前人们认识到的参与木质素降解的酶主要有多酚氧化酶(Polyphenol oxidase)、锰过氧化物酶(Maganese peroxidase)和木质素酶(Ligninase)。后者是近来新发现在木质素降解过程中起作用的过氧化物酶。本文研究一种对木质素降解能力很强的云芝(Polyporus versicolor)在摇瓶培养条件下,培养方式、营养条件以及添加诱导剂藜芦醇和表面活性剂Tween80等因素对木质素降解酶生产的影响。  相似文献   

16.
Veratryl alcohol, added as a supplement to cultures of Phanerochaete chrysosporium, enhanced ligninase activity through protection of the ligninase against inactivation by hydrogen peroxide produced by this fungus in cultures. In the presence of veratryl alcohol, the loss of ligninase activity observed in non-protein-synthesizing cultures (cycloheximide-treated) equaled the extracellular protein turnover. When cultures were not supplemented with veratryl alcohol, inactivation of ligninase by hydrogen peroxide added to protein turnover, resulting in a more rapid loss of ligninase activity. Although all ligninase isoenzymes are sensitive to inactivation by hydrogen peroxide, only the isoenzyme of the highest specific activity (80.6 nkat · mg of protein−1; Mr, 41,800; pI, 3.96) was found to be protected by veratryl alcohol. The concentration of veratryl alcohol necessary for full protection of ligninase activity varied according to the concentration of hydrogen peroxide present in the medium, which depended on the nature of the carbon source (glucose or glycerol). It is proposed that the nature of the carbon source influences the overall ligninase activity not only directly, by affecting the rate and the type of synthesized ligninase, but also by affecting the rate of hydrogen peroxide production, bringing about different rates of inactivation.  相似文献   

17.
关于巯基和Mn~(2+)介导豆壳过氧化物酶氧化藜芦醇的研究   总被引:1,自引:0,他引:1  
藜芦醇作为非酚型木素模型物具有较高的氧化还原电位,豆壳过氧化物酶(soybeanhullperoxidase,SHP,EC.1.11.1.7)通过依赖于过氧化氢的正常过氧化物酶催化循环不能氧化藜芦醇,但在还原型谷胱甘肽、Mn2+和有机酸络合剂存在下却可以通过不依赖于过氧化氢的氧化酶反应途径完成对藜芦醇的氧化,产物为藜芦醛,反应最适pH为4.2。动力学研究表明该反应遵循顺规序列反应机制;对藜芦醇的表观KM值为4.3mmol/L,对谷胱甘肽的表观KM值为4.8mmol/L。巯基还原剂二硫苏糖醇、L-半胱氨酸和β-巯基乙醇亦可替代还原型谷胱甘肽促进藜芦醇氧化  相似文献   

18.
Spore formation of Myxococcus xanthus can occur not only on agar plates during fruiting body formation, but also in a liquid culture by simply adding glycerol, dimethyl sulfoxide, or phenethyl alcohol to the culture. This chemically-induced spore formation occurs synchronously and much faster than that occurring during fruiting body formation. Dramatic changes in patterns of protein synthesis were observed during chemically-induced spore formation, as had previously been observed during fruiting body formation (Inouye et al., Dev. Biol. 68:579-591, 1979). However, the production of protein S, one of the major development-specific proteins during fruiting body formation, was not detected at all, although protein U, another development-specific protein, was produced in a late stage of spore formation as in the case of fruiting body formation. This indicates that the control of the gene expression during chemically-induced spore formation is significantly different from that during fruiting body formation. It was also found that during spore formation, every cell seems to have a potential to form a spore regardless of its age, since smaller cells as well as larger cells separated by sucrose density gradient centrifugation could equally form spores upon the addition of glycerol. Patterns of protein synthesis were almost identical for all the three chemicals. However, the final yield of spores was significantly different depending upon the chemicals used. When phenethyl alcohol was added with glycerol or dimethyl sulfoxide, the final yields were determined by the multiple effect of the two chemicals added. This suggests that although these chemicals are able to induce the gene functions required for spore formation, they may have inhibitory effects on some of the gene functions or the processes of spore formation.  相似文献   

19.
We report the synthesis of veratraldehyde from veratryl alcohol by Phanerochaete chrysosporium lignin peroxidase with in situ electrogeneration of hydrogen peroxide in an electroenzymatic reactor. The effects of operating parameters such as enzyme level, pH, and electrical potential on the efficiency of veratryl alcohol oxidation were investigated. Furthermore, we compared direct addition of hydrogen peroxide with electrogeneration of the material during enzymatic oxidation of veratryl alcohol. The electroenzymatic method using in situ-generated hydrogen peroxide was found to be effective for oxidation of veratryl alcohol by lignin peroxidase. The new method may be easily applied to biodegradation systems.  相似文献   

20.
Manganese peroxidase (MnP) production in the white-rot basidiomycete Physisporinus rivulosus T241i was studied. Separate MnP isoforms were produced in carbon-limited liquid media supplemented with Mn2+, veratryl alcohol, or sawdust. The isoforms had different pH ranges for the oxidation of Mn2+ and 2,6-dimethoxyphenol. Although lignin degradation by white-rot fungi is often triggered by nitrogen depletion, MnPs of P. rivulosus were efficiently produced also in the presence of high-nutrient nitrogen, especially in cultures supplemented with veratryl alcohol. Two MnP encoding genes, mnpA and mnpB, were identified, and their corresponding cDNAs were characterized. Structurally, the genes showed marked dissimilarity, and the expression of the two genes implicated quantitative variation and differential regulation in response to manganese, veratryl alcohol, or sawdust. The variability in regulation and properties of the isoforms may widen the operating range for efficient lignin degradation by P. rivulosus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号