首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrite incubation in mitochondria and nitrate intoxication of rats have been studied for their effect on aerobic energetic processes in the liver. Sodium nitrite in concentration of 2 mg/l causes an inhibition of ADP-stimulated respiration and provides uncoupling processes of oxidative phosphorylation and respiration in mitochondria, when adding succinate as a substrate. Low doses of nitrate in vivo promote oxygen economization in mitochondria. Intoxication of rats with nitrate in a dose of 50 mg/l for 30 days induces a decrease of the respiration rate after ADP-phosphorylation and an increase of the coefficient of oxidative phosphorylation efficiency (ADP/O). Intraperitoneal administration of adrenalin in a dose of 25 micrograms/100 g to rats after 30-day nitrate intoxication in a concentration of 10 mg/l induces no typical increase of ADP-stimulated respiration and rate of oxidative phosphorylation and succinate oxidation.  相似文献   

2.
The rate of oxidative phosphorylation was studied in rat liver mitochondria incubated with free Ca2+ concentrations that range from 10(-9) to 5 X 10(-6) M. The highest rate was observed between 0.5-1.0 microM Ca2+. ATP synthesis was measured by polarographic and spectrophotometric techniques and by uptake of radioactive inorganic phosphate. The concentration of Ca2+ at which maximal rates of ATP synthesis take place is modified by Mg2+ and phosphate. The dependence of oxidative phosphorylation on Ca2+ was observed with alpha-ketoglutarate, glutamate + malate, and succinate, but not with beta-hydroxybutyrate. At 10(-9) M Ca2+ there is a continuous exit of endogenous Ca2+, while with 10(-6) M Ca2+, intramitochondrial Ca2+ levels remained constant throughout time. Apparently the control of the level of internal Ca2+ by external Ca2+ modulates the rate of oxidative phosphorylation. Uncoupler-stimulated respiration also depends on Ca2+ concentration, even though at 10(-9) to 10(-6) M Ca2+ the rate of oxidative phosphorylation is lower than the rate of uncoupled respiration. The contribution of the ADP/ATP carrier and the ATP synthase to the kinetic regulation of ATP synthesis at 10(-9) and 10(-6) M Ca2+ was evaluated by titrations with carboxyatractyloside and oligomycin, respectively. The contribution of the carrier and the synthase to the regulation of the final rate of ATP synthesis was different at the two concentrations of Ca2+; therefore, the concentration of extramitochondrial Ca2+ influences the overall kinetics of oxidative phosphorylation.  相似文献   

3.
Debaryomyces hansenii was grown in YPD medium without or with 1.0 M NaCl or KCl. Respiration was higher with salt, but decreased if it was present during incubation. However, carbonylcyanide-3-chlorophenylhydrazone (CCCP) markedly increased respiration when salt was present during incubation. Salt also stimulated proton pumping that was partially inhibited by CCCP; this uncoupling of proton pumping may contribute to the increased respiratory rate. The ADP increase produced by CCCP in cells grown in NaCl was similar to that observed in cells incubated with or without salts. The alternative oxidase is not involved. Cells grown with salts showed increased levels of succinate and fumarate, and a decrease in isocitrate and malate. Undetectable levels of citrate and low-glutamate dehydrogenase activity were present only in NaCl cells. Both isocitrate dehydrogenase decreased, and isocitrate lyase and malate synthase increased. Glyoxylate did not increase, indicating an active metabolism of this intermediary. Higher phosphate levels were also found in the cells grown in salt. An activation of the glyoxylate cycle results from the salt stress, as well as an increased respiratory capacity, when cells are grown with salt, and a 'coupling' effect on respiration when incubated in the presence of salt.  相似文献   

4.
The regulation of oxidative metabolism in hepatocytes of lampreys (Lampetra fluviatilis) during the freshwater pre-spawning period of their life cycle was studied. The energy metabolism in these cells is characterized by a simplified scheme, where glycolytic ATP production is insignificant and fatty acids are the major respiratory substrates. Seasonal changes in aerobic cell metabolism include a considerable reversible depression of metabolic rate in lamprey hepatocytes during the winter months of the pre-spawning period. The depression is characterized by a more than twofold decrease in hepatocyte endogenous respiration rate, a reduction of oxidative phosphorylation and drop in cellular ATP content. The addition of fatty acids to the hepatocyte incubation medium prevents the decrease in the metabolic rate. In spring, before spawning, a marked activation of energy metabolism in lamprey hepatocytes is found. These observations support the conclusion that the regulation of lamprey hepatocyte energy metabolism is realized through the availability of fatty acids for oxidation.  相似文献   

5.
Adenine nucleotides and respiration were assayed with rat kidney mitochondria depleted of adenine nucleotides by pyrophosphate treatment and by normothermic ischemia, respectively, with the aim of identifying net uptake of ATP as well as elucidating the contribution of adenine nucleotide loss to the ischemic impairment of oxidative phosphorylation. Treatment of rat kidney mitochondria with pyrophosphate caused a loss of adenine nucleotides as well as a decrease of state 3 respiration. After incubation of pyrophosphate-treated mitochondria with ATP, Mg2+ and phosphate, the content of adenine nucleotides increased. We propose that kidney mitochondria possess a mechanism for net uptake of ATP. Restoration of a normal content of matrix adenine nucleotides was related to full recovery of the rate of state 3 respiration. A hyperbolic relationship between the matrix content of adenine nucleotides and the rate of state 3 respiration was observed. Mitochondria isolated from kidneys exposed to normothermic ischemia were characterized by a decrease in the content of adenine nucleotides as well as in state 3 respiration. Incubation of ischemic mitochondria with ATP, Mg2+ and phosphate restored the content of adenine nucleotides to values measured in freshly-isolated mitochondria. State 3 respiration of ischemic mitochondria reloaded with ATP recovered only partially. The rate of state 3 respiration increased by ATP-reloading approached that of uncoupler-stimulated respiration measured with ischemic mitochondria. These findings suggest that the decrease of matrix adenine nucleotides contributes to the impairment of ischemic mitochondria as well as underlining the occurrence of additional molecular changes of respiratory chain limiting the oxidative phosphorylation.  相似文献   

6.
The transmembrane potential (delta psi) of rabbit brain mitochondria was measured with the fluorescent dye dis--C2--5. During oxidative phosphorylation a fall in delta psi in the order of 20% was observed. In the presence of inhibitors of ATP synthesis, there was a good correlation between the fall in delta psi and the ADP-stimulated increase in respiration rate. The influence of endogenous calcium on the energetic metabolism of mitochondria was studied by measuring the changes of delta psi. An amount of 12 nmol Ca2+/mg protein cause half-inhibition of the ATP synthesis rate; 50 nmol/mg completely inhibits oxidative phosphorylation. The effect of the Ca2+ load on the ATPase activity of intact mitochondria was studied. It was found that endogenous calcium inhibits in a similar degree synthesis and hydrolysis of ATP. It was shown that both Ca ATP and Mg ATP can serve as a substrate for the mitochondrial ATPase.  相似文献   

7.
Three months after whole-body irradiation of mice with a sublethal dose of 5 Gy a study was made of some indices of energy metabolism like tissue respiration, oxidative phosphorylation, and formation of lactic acid in the survived brain homogenate. Revealed were the diminution of coupling of tissue respiration of oxidative phosphorylation, the rate of oxygen consumption and the level of cyano-resistant respiration being constant, the increase in the rate of glycolysis in anaerobic and particularly, in aerobic conditions, and reduction of the Pasteur and Crabtree effects. The above mentioned changes in the brain energy metabolism seem to be a manifestation of the process of the reduced metabolism formation in the nervous tissue at the remote times after irradiation.  相似文献   

8.
The purpose of this study was to investigate the long-term control of ATP synthesis during the course of Saccharomyces cerevisiae batch grown on lactate, a purely respiratory substrate. For this, we used a respirometric and on-line calorimetric approach to analyse the energetic balances and the control of energetic metabolism during growth. Enthalpic growth yields assessed by enthalpy balance (taking account of substrate consumption, by-product accumulation, biomass formation and heat dissipation) remained constant during the entire exponential growth. Moreover, at the same time, a parallel decrease in basal respiratory rate and enthalpy flux occurred. It is shown that the decrease in respiration corresponds to a decrease in the amount of mitochondria per cell but not to a change of steady state of oxidative phosphorylation. Taking into account the part of energy used for maintenance, it can be concluded that mitochondria by themselves are the major heat dissipative system in a fully aerobic metabolism, and that the decrease in the amount of mitochondria when growth rate decreases leads to an enthalpic growth yield constant.  相似文献   

9.
Modelling Xanthomonas campestris batch fermentations in a bubble column   总被引:1,自引:0,他引:1  
Rate and yield expressions relating to biomass and xanthan formation and to nitrogen, glucose, and oxygen consumption were established for Xanthomonas campestris batch fermentations in a bubble column. Microbial growth was described by the logistic rate equation, characterized by a maximum specific growth rate mu(M) = 0.5 h(-1) and a maximum attainable cell concentration provided by nitrogenous compounds. With regard to carbon metabolism, the decrease with time in experimental yields and in the experimental specific rates of xanthan production and glucose assimilation demonstrated the inadequacy of the Luedeking-Piret model. These decreases were connected to the simultaneous drop in dissolved-oxygen tension observed during xanthan synthesis. The knowledge of metabolic pathways and energetic balance were used to establish the relationships between substrate utilization, ATP generation, and xanthan production. The model was structured by assuming the oxygen limitation of both the respiration rate and the efficiency of the oxidative phosphorylation mechanism (P/O ratio). Consequently, the specific rates and yield expressions became dependent on the dissolved-oxygen tension, i.e., of the volumetric oxygen transfer in the fermentor.  相似文献   

10.
The bioluminescent activity of intact Vibrio harveyi cells loaded with different concentrations of NaCl and KCl at different pH values was studied. In the pH range of 6.5-8.5, the effect of Na+ was significantly higher than that of K+ at all concentrations studied. Maximum luminescent activity was observed in cells loaded with 0.68 M NaCl. When Na+ was nonuniformly distributed on the plasma membrane, the cell luminescence kinetics was nonstationary in the 20-min range: during incubation, the luminescence intensity increased at pH 6.5 and decreased at pH 8.5. The activation and damping rate constants depended on the Na+ gradient value. The maximum of luminescent activity shifted during incubation from pH 8.5 to 6.5-7.0. The luminescence kinetics in the systems with KCl was stationary; the maximum level of luminescence was observed in the pH range of 7.0-7.5. Under Na(+)-controlled conditions, the cell respiration and luminescence changed in synchronism. The protonophore CCP at a concentration of 20 microM completely inhibited luminescence at pH 6.5 and was ineffective at pH 8.5.  相似文献   

11.
Abstract: This paper describes the effect of four organophosphorus insecticides: Dipterex, DDVP, Ronnel and its oxygen analogue on the respiration of rat brain synaptosomes. Dipterex and DDVP in the concentrations used, 5, 50, or 500 μM, did not change the rate of oxygen uptake and oxidative phosphorylation in rat brain synaptosomes. Ronnel in the highest concentration (500 μM) inhibited respiration in state 3 conditions and abolished respiratory control by ADP. This inhibition was correlated with a change of cytochrome c oxidase activity. The oxygen analogue of Ronnel (OAR) in micromolar concentrations (50 μM) increased the rate of respiration of synaptosomes utilizing glutamate plus malate as substrate. Higher concentrations of OAR produced inhibition of respiration, cytochrome c oxidase and NADH: cytochrome c reductase activities. These observations are typical for uncouplers of oxidative phosphorylation. Noteworthy is the fact that the uncoupling activity of OAR was observed at concentrations which did not inhibit acetylcholinesterase activity. These findings seem to suggest that disturbances in oxidative processes could play an important role in the toxicity of organophosphorus insecticides. The relation between chemical structure and the ability of insecticides to affect oxidative phosphorylation is discussed.  相似文献   

12.
A study was made of respiration, heat production, K+ output and ultrastructure of wheat root cells treated for 6 h with rotenone (10 microM), an inhibitor of HADH-ubiquinone oxidoreductase (Complex I). Besides, the involvement of alternative pathways for adaptation to this inhibitor was studied. After 20 min of treatment, a brightened mitochondrial matrix and mitochondria with torus shapes were observed. We propose that the outer area of mitochondria increases due to their torus shapes, and this can point to the activating of extremal NAD(P)H-dehydrogenase, which uses enternal NAD(P)H. Further on the normal ultrastructure of mitochondria was observed, which may result from activation of succinate dehydrogenase and rotenone resistant NAD(P)H-dehydrogenase. After 1 h of treatment, a decrease in respiration, heat production, K+ output and pH increase of incubation medium were observed. Starting from 2 h of incubation and up to the end of the experiment, an increase of respiration and heat production was observed, pointing to the activation of oxidative phosphorilation. Besides, re-entry of K+ and pH decrease in the incubation medium were observed. We conclude that these findings may indicate to a possible adaptation of root cells to this inhibitor. We propose that the torus shape of mitochondria may be associated with function of external NAD(P)H-dehydrogenase.  相似文献   

13.
Cherchenko  A. P.  Todor  I. M. 《Neurophysiology》2001,33(4):224-228
We measured the rate of oxygen consumption by the mitochondria from the brain tissues of rabbits within a remote period after light cranio-cerebral trauma. One and six months after traumatization, oxidative phosphorylation in rabbits of the experimental groups demonstrated no significant difference from that in the control group. Yet, after a 12-month-long interval, clear differences were observed within the cortical zone with post-traumatic epileptic nidus. The coefficient of energy production decreased, and the process of oxidative phosphorylation became uncoupled. When succinate was used as a substrate for oxidation, we observed significant decreases in the rate of oxygen consumption in ADP phosphorylation and in the coefficient of respiration control. A significant decrease in the rate of oxygen consumption in the resting state (V 2), the absence of disturbances in the respiration control, and preservation of a sufficient reserve ATPase activity were characteristic features when glutamate was used as a substrate. It seems probable that such shifts in oxidative phosphorylation can result in creation of an excessive glutamate pool and provide excessive epileptogenic glutamatergic activation of the neurons.  相似文献   

14.
Softening of the flesh and the rise in ethylene evolution and respiration associated with ripening in pear (Pyrus communis L.) fruit was delayed when mannose was vacuum infiltrated into intact fruit. The extent of delay could be modified by altering the concentration or the volume of mannose applied to the fruit. Inhibition of ripening was associated with phosphorylation of mannose to mannose 6-phosphate (M6P), and accumulation of M6P was associated with lowered levels of inorganic phosphate (Pi), glucose 6-phosphate (G6P), and ATP in the fruit tissue. Subsequently, however, as the M6P was metabolized, the levels of Pi, G6P, and ATP increased and ripening processes were concomitantly released from inhibition. Hence, the degree of inhibition by mannose or the release from inhibition was related to the level of M6P in the fruit and its rate of metabolism. The data provide correlative evidence to support a view that one inhibitory effect of mannose is depletion of Pi in the cell as a result of phosphorylation of mannose to M6P. Inhibition of ripening by mannose was not alleviated by co-application of glucose as a competitive substrate for the hexokinase(s), or by Pi, presumably the depleted metabolite. Also, incubation of tissue disks with M6P resulted in inhibition of ethylene production and respiration. The structural analogs of mannose, glucosamine, and 2-deoxyglucose, which have been shown to mimic mannose action in several plant tissues, did not cause inhibition of ripening of pear fruit comparable with that associated with mannose. Both analogs stimulated respiration, and glucosamine caused only a small inhibition of softening and ethylene evolution. Another mannose analog, α-methylmannoside, did inhibit fruit ripening though to a lesser extent than mannose. Its influence was also associated with accumulation of M6P and a decrease of Pi levels. We conclude that the mannose effect may, in part, be due to M6P toxicity, as well as by depletion of Pi.  相似文献   

15.
Short-period (40-50 min) synchronized metabolic oscillation was found in a continuous culture of yeast Saccharomyces cerevisiae under aerobic conditions at low-dilution rates. During oscillation, many parameters changed cyclically, such as dissolved oxygen concentration, respiration rate, ethanol and acetate concentrations in the culture, glycogen, ATP, NADH, pyruvate and acetate concentrations in the cells. These changes were considered to be associated with glycogen metabolism. When glycogen was degraded, the respiro-fermentative phase was observed, in which ethanol was produced and the respiration rate decreased. In this phase, the levels of intracellular pyruvate and acetate became minimum, ATP became high and intracellular pH at its lowest level. When glycogen metabolism changed from degradation to accumulation, the respiratory phase started, during which ethanol was re-assimilated from the culture and the respiration rate increased. Intracellular pyruvate and acetate became maximum, ATP decreased and the intracellular pH appeared high. These findings may indicate new aspects of the control mechanism of glycogen metabolism and how respiration and ethanol fermentation are regulated together under aerobic conditions.  相似文献   

16.
It has been shown that a three-week feeding of rats with oil derived from seeds of amaranth (Amaranthus cruentus L.) leads to a moderate activation of respiration of coupled and uncoupled rat liver mitochondria (MCh) that oxidize succinate and succinate + glutamate, as well as alpha-ketoglutarate and alpha-ketoglutarate + malonate. In animals receiving the amaranth oil, the injection of adrenaline did not affect the oil-activated respiration of MCh during succinate oxidation; i. e., animals prepared by an oil-enriched diet were resistant to the action of adrenaline, which prevented from possible hyperactivation of mitochondrial functions. In the group of control animals, which received no oil, the injection of adrenaline activated the rate of phosphorylating respiration of MCh during oxidation of succinate or succinate + glutamate: the rate of oxygen uptake in state 3 respiration (by Chance) increased, and the phosphorylation time decreased. The injection of adrenaline did not affect the parameters of respiration of MCh that oxidize a-ketoglutarate; however, in the presence of malonate, the oxidation of alpha-ketoglutarate in state 3 and uncoupled respiration have shown mild but significant increase in response to adrenaline. In animals receiving the amaranth oil, the oil-induced activation of respiration of MCh in response to adrenaline retained but did not increase; however, the phosphorylation time significantly decreased. Thus, concentrated oil of seeds activates the respiration of MCh. In addition, it enhances an energetic function of MCh, which prevents from the hyper-activation of mitochondrial respiration by adrenaline. Therefore an activation of energetic function of MCh by amaranth oil could explain its adaptogenic effect on rats.  相似文献   

17.
Brown fat cells isolated from adult golden hamsters have earlier been found to respond to addition of the physiological agonist norepinephrine with an increased rate of oxygen consumption and with fatty acid release. Working with these cells, we found the following. 1. The presence of albumin in the incubation medium (phosphate buffer) increases norepinephrine-induced fatty acid release and tends to stabilize the rate of oxygen consumption; bubbling of phosphate buffer with 5% CO2 in air has only a slight effect on fatty acid release. 2. In the presence of albumin, the norepinephrine-induced rate of oxygen consumption is also stable in bicarbonate buffer; it is higher than in the phosphate + CO2 buffer and the brown fat cells have a higher sensitivity to norepinephrine. 3. 20 mM phosphate (as e.g. present in a phosphate buffer) inhibits both fatty acid release and oxygen consumption. 4. Insulin inhibits the rate of oxygen consumption, but only at suboptimal concentrations of norepinephrine. 5. Atractylate inhibits submaximal norepinephrine-induced respiration, indicating that some oxidative phosphorylation takes place in norepinephrine-stimulated brown fat cells. 6. Fatty acid export from brown fat should be regarded as physiologically important.  相似文献   

18.
T Shimizu  K Kouketsu 《Cryobiology》1988,25(2):164-169
The effects of the addition and removal of glycerol on the metabolic activities of human platelets were studied. Platelet concentrates (PC) with 20 ml plasma were stored with 3-7% (v/w) glycerol in 150-ml polyvinylchloride plastic bags for 2 days at 22 degrees C with constant agitation. Incubation of glycerol with platelets produced a dose-dependent inhibition of oxygen consumption. The inhibitions of glucose utilization and lactate production had reached the plateau level at 3% glycerol. The rate of adenosine triphosphate (ATP) generation of control platelets was 9.8 nmol/min/10(9) platelets, in which over 90% ATP generation was derived from oxidative phosphorylation. There was a dose-dependent decrease (up to 20%) by glycerol in the rate of platelet ATP generation. Glycerol inhibited glycolysis more than oxidative phosphorylation. However, the inhibition potency diminished with increasing concentrations of glycerol. The energy metabolism of platelets after removal of 5% glycerol was examined. Deglycerolized platelets after 1 hr incubation facilitated energy metabolism more strongly than that of 24 hr incubation. The platelet aggregation response to collagen was not impaired by a cycle of the addition and removal of glycerol. The results indicate that glycerol lowered the rate of ATP generation of platelets stored at 22 degrees C. However, the removal of glycerol reversed the decreased energy metabolism.  相似文献   

19.
The sensitivity of human melanoma and lung cancer strains transplanted to nude mice to the synthetic hormone of hypothalamus--melanostatin has been defined. Correlation has been noted between the rate of melanoma growth inhibition, decrease in the rate of Na-fluorescent accumulation in the tumor and the tendency towards depression of the activity of energetic metabolism enzymes (SDH and alpha-GPDH) in the treated tumors as compared to control. Moderate lymphopenia and absence of effect on the same enzymes of the lymphocytes was also observed. Fluorescent probes can be used in the estimation of the drug action on the tumor and organs.  相似文献   

20.
The mechanism of the stimulating effect of short-term cold exposure of animal on tissue respiration has been studied. Oxygen consumption by a piece of the rat diaphragm muscle, fixed in a frame and put into a polarographic cell, was measured with an oxygen electrode. It is found that 13 min exposure of the rat to an air temperature of +2°C induces (1) an increase in respiration rate in the diaphragm tissue, (2) a decrease in stimulation of respiration by dinitrophenol (DNP) and (3) a decrease in the sensitivity of respiration to amytal. The maximal respiration rate observed in the presence of 40 M DNP is unaffected. Acclimation for two weeks of rats at +2°C does not influence the measured parameters. Effects similar to those produced by short-term cold exposure can be obtained by treatment of the cold acclimated animals with norepinephrine. In non-acclimated rats, norepinephrine is ineffective. The effects of cold exposure (or norepinephrine) can be reproduced on the diaphragm from a non-treated animal by the addition of 0.2 mM oleate or 10 mM pyruvate to the incubation medium. All effects of cold exposure or norepinephrinein vivo, or oleate and pyruvatein vitro are inhibited by oubain or replacement of Na+ by Li+ in the incubation mixture. The role of fatty acids and Na,K ATP-ase in the thermoregulatory responses of the tissue respiration is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号