首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The effects of methyl jasmonate (MJ) elicitation on the cell growth and accumulation of ginsenoside in 5-l bioreactor suspension cultures of Panax ginseng were investigated. Ginsenoside accumulation was enhanced by elicitation by MJ (in the range 50–400 M); however, fresh weight, dry weight and growth ratio of the cells was strongly inhibited by increasing MJ concentration. The highest ginsenoside yield was obtained at 200 M MJ. In the second experiment, 200 M MJ was added on day 15 during the cultivation. The ginsenoside, Rb group, and Rg group ginsenoside content increased 2.9, 3.7, and 1.6 times, respectively, after 8 days of MJ treatment. Rb group gisnsenosides accumulated more than Rg group ginsenosides. Among Rb group ginsenosides, Rb1 content increased significantly by four times but the contents of Rb2, Rc and Rd increased only slightly. Among Rg group ginsenosides, Rg1 and Re showed 2.3-fold and 3.0-fold increments, respectively, whereas there was only a slight increment in Rf group ginsenosides. These results suggest that MJ elicitation is beneficial for ginsenoside production using 5-l bioreactor cell suspension cultures.  相似文献   

2.
3.
Panax ginseng roots transformed by Agrobacterium rhizogenes grew rapidly in a hormone-free medium. The transformed roots showed biphasic growth: rapid during the first two weeks and slower thereafter. Sucrose in the medium was almost all converted to glucose and fructose during the first two weeks, and the root growth slowed down after the depletion of sucrose in the medium. Periodic changes of the medium maintained the high growth rate, and the dry weight increased by 31 times in 32 days, which is the highest growth rate so far reported for cultured tissues of ginseng. The medium exchange also increased the ginsenoside content in the roots. Effective scale-up of the root culture was achieved in a turbine-blade type bioreactor.  相似文献   

4.
The aim of the work was to study the growth characteristics of cultured cells of Panax japonicus var. repens, an endemic plant of the Primorski Krai of Russia, grown in laboratory bioreactors and to determine the content of basic ginsenosides under these conditions. An increase of the inoculum size of the culture produced higher biomass accumulation and economic coefficient but slightly reduced the specific growth rate. An increase in the auxin concentration in a medium by adding 2,4-D practically did not affect growth characteristics of the culture but significantly reduced the size of cell aggregates. In all treatments tested, all major ginsenosides (Rb1, Rc, Rb2, Rd, Rf, Rg1, and Re) were found in the culture. The total ginsenoside content was 2–3% per biomass dry weight. Meantime, ginsenosides of the Rg-series with protopanaxatriol as aglycone prevailed (70% of the total ginsenoside content). The culture conditions considerably affected the ratio of individual ginsenosides. In 2,4-D-containing medium, the preferential synthesis of Re ginsenoside was observed while both Rg1 and Re were synthesized in other treatments.  相似文献   

5.
Panax ginseng calluses were cultured for 5 weeks on solid MS medium supplemented with kinetin 0.46 mM (0.1 mg l–1) and 2 mg l–1 of 2,4-D (9.05 mM), IBA (9.98 mM) or NAA (10.74 mM). In the conditions studied, 2,4-D inhibited the organogenic capacity of the calluses, whereas IBA or NAA increased this capacity. IBA induced the formation of a high number of buds and roots, but the roots were thin and necrotized. Calluses grown with NAA produced fewer buds and roots than those grown in IBA medium, but the roots were thick and showed good growth. The highest ginsenoside content was found in root forming calluses grown in the presence of NAA.In calluses forming roots or buds, 2,4-D, NAA and especially IBA increased the Rb group of ginsenosides rather than that of the Rg group.  相似文献   

6.
Summary Hairy root cultures of Panax ginseng, established after the infection of root sections with Agrobacterium rhizogenes KCTC 2703, were cultured in phytohormone-free Murashige and Skoog (MS) liquid medium containing different concentrations of jasmonic acid and some other elicitors, in order to promote ginsenoside accumulation. Jasmonic acid in the range 1.0−5.0 mg l−1 (4.8–23.8 μM) strongly improved total ginsenoside production in ginseng hairy roots. Peptone (300 mg l−1) also showed some effect on ginsenoside improvement; however its effect was much weaker than that of jasmonic acid. Ginsenoside content and productivity were 58.65 and 504.39 mg g−1, respectively. The Rb group of ginsenoside content was increased remarkably by jasmonic acid, while Rg group ginsenoside content changed only slightly compared to controls. However, jasmonic acid also strongly inhibited ginseng hairy root growth.  相似文献   

7.
A ribonuclease, with a molecular mass of 23kDa, and much higher activity toward poly(U) than poly(C) and only negligible activity toward poly(A) and poly(G), was isolated from the aqueous extract of Chinese ginseng (Panax ginseng) flowers. The ribonuclease was unadsorbed on diethylaminoethyl-cellulose and adsorbed on Affi-gel blue gel and carboxymethyl-cellulose. High activity of the ribonuclease was maintained at pH 6-7. On either side of this pH range, there was a precipitous drop in enzyme activity. The activity of the enzyme peaked at 50 degrees C and fell to about 20% of the maximal activity when the temperature was lowered to 20 degrees C or raised to 80 degrees C. The characteristics of this ribonuclease were different from those of ribonuclease previously purified from ginseng roots.  相似文献   

8.
人参总皂甙对人GM-CSF和GM-CSFR表达的调控   总被引:6,自引:0,他引:6  
Wang SL  Chen D  Wang YP  Liu YG  Jiang R 《生理学报》2003,55(4):487-492
为探讨人参调控粒细胞发生的生物学机制,采用造血祖细胞和骨髓基质细胞体外培养、造血生长因子生物学活性检测、免疫细胞化学、核酸分子原位杂交、免疫沉淀和蛋白印迹等现代生物学技术,研究人参总皂甙(total saponins of Panax ginaeng,TSPG)对人粒-巨噬细胞集落刺激因子(granulocyte-macrophage colony-stimulating factor,GM-CSF)和粒-巨噬细胞集落刺激因子受体α(GM-CSFRα)表达的影响。结果:(1)经TSPG(50μg/m1)诱导制备的骨髓基质细胞、胸腺细胞、脾细胞、血管内皮细胞和单核细胞条件培养液可显著提高粒单系造血祖细胞(CFU-GM)的集落产率;(2)经TSPG(50μg/ml)诱导后,上述细胞的GM-CSF蛋白(诱导24h)和mRNA(诱导12h)表达显著提高;(3)经TSPG(50μg/ml)诱导24h骨髓造血细胞的GM-CSFRα蛋白表达增强;(4)经TSPG(50μg/ml)刺激后2min,GM-CSFRα和Shc发生酪氨酸磷酸化,5min时达高峰,随后去磷酸化。上述结果表明,TSPG可能通过直接和/或间接途径促进淋巴细胞与骨髓基质细胞合成与分泌GM-CSF,诱导骨髓造血细胞表达GM-CSFRα,并刺激GM-CSFRα和Shc的酪氨酸可逆磷酸化,从而通过调控GM-CSF的信号转导过程,促进CFU-GM的增殖。  相似文献   

9.
Adventitious roots of ginseng were treated with methyl jasmonate (MJ) up to 150 microM and cultured for 40 days. Up to 100 microM MJ inhibited the root growth but increase ginsenoside accumulation. In a two-stage bioreactor culture, total ginsenosides, after elicitation with 100 microM MJ peaked after 10 days at 48 mg g(-1) dry wt and then dropped sharply. Of the two groups of ginsenosides (Rb and Rg), higher amounts of Rb accumulated in the adventitious roots.  相似文献   

10.
Applied Microbiology and Biotechnology - Biotic elicitation is an important biotechnological strategy for triggering the accumulation of secondary metabolites in adventitious root cultures. These...  相似文献   

11.
12.
We investigated the effects on ginseng adventitious root growth and ginsenoside production when macro-element concentrations and nitrogen source were manipulated in the culture media. Biomass growth was greatest in the medium supplemented with 0.5-strength NH4PO3, whereas ginsenoside accumulation was highest (9.90 mg g-1 DW) in the absence of NH4PO3. At levels of 1.0-strength KNO3, root growth was maximum, but a 2.0 strength of KNO3 led to the greatest ginsenoside content (9.85 mg g-l). High concentrations of MgSO4 were most favorable for both root growth and ginsenoside accumulation (up to 8.89 mg g-1 DW). Root growth and ginsenoside content also increased in proportion to the concentration of CaCI2 in the medium, with the greatest accumulation of ginsenoside (8.91 mg g-1 DW) occurring at a 2.0 strength. The NH4/NO3 -- ratio also influenced adventitious root growth and ginsenoside production; both parameters were greater when the NO3 - concentration was higher than that of NH4 +. Maximum root growth was achieved at an NH4 +/NO3 - ratio of 7.19/18.50, while ginsenoside production was greatest (83.37 mg L-1) when NO3 - was used as the sole N source.  相似文献   

13.
《Process Biochemistry》2010,45(8):1319-1324
To obtain microorganisms for the microbial conversion of ginsenosides in red ginseng powder (RGP), Lactobacillus species (M1–M4 and P1–P4) were isolated from commercial ginseng products. Strain M1 was determined to be L. plantarum by 16S rRNA sequencing. Red ginseng powder (RGP) fermented by L. plantarum M1 had a high total content of ginsenosides (142.4 mg/g) as compared to the control (121.8 mg/g). In particular, the ginsenoside metabolites Rg3, Rg5, Rk1, Compound K (CK), Rh1, and Rg2 showed a high level in the fermented RGP (65.5 mg/g) compared to the control (32.7 mg/g). During fermentation for 7 days, total sugar content decreased from 8.55 mg/g to 4 mg/g, uronic acid content reached its maximum (53.43 μg/g) at 3 days, and total ginsenoside content increased to 176.8 mg/g at 4 days. In addition, ginsenoside metabolites increased from 38.0 mg/g to 83.4 mg/g at 4 days of fermentation. Using everted instestinal sacs of rats, the fermented red ginseng showed a high transport level (10.3 mg of polyphenols/g sac) compared to non-fermented red ginseng (6.67 mg of polyphenols/g sac) after 1 h. These results confirm that fermentation with L. plantarum M1 is very useful for preparing minor ginsenoside metabolites while being safe for foods.  相似文献   

14.
Aims: Development and optimization of an efficient and inexpensive biotransformation process for ginsenoside compound K production by Paecilomyces bainier sp. 229. Methods and Results: We have determined the optimum culture conditions required for the efficient production of ginsenoside compound K by P. bainier sp. 229 via biotransformation of ginseng saponin substrate. The optimal medium constituents were determined to be: 30 g sucrose, 30 g soybean steep powder, 1 g wheat bran powder, 1 g (NH4)2SO4, 2 g MgSO4·7H2O and 1 g CaCl2 in 1 l of distilled water. An inoculum size of 5–7·5% with an optimal pH range of 4·5–5·5 was essential for high yield. Conclusions: The Mol conversion quotient of ginseng saponins increased from 21·2% to 72·7% by optimization of the cultural conditions. Scale‐up in a 10 l fermentor, under conditions of controlled pH and continuous air supply in the optimal medium, resulted in an 82·6% yield of ginsenoside compound K. Significant and Impact of the Study: This is the first report on the optimization of culture conditions for the production of ginsenoside compound K by fungal biotransformation. The degree of conversion is significantly higher than previous reports. Our method describes an inexpensive, rapid and efficient biotransformation system for the production of ginsenoside compound K.  相似文献   

15.
Ginseng (Panax ginseng C. A. Mey.) is widely used as a major medicinal herb and as a feedstock for the medicine, beverage, food, cosmetic, etc. industries, in China and several other Asian countries. However, limited research has been accomplished into its genetics, genomics and breeding. To clone, characterize and utilize the genes of economic importance in the species, we have developed a large-insert plant-transformation-competent binary bacterial artificial chromosome (BIBAC) library for Jilin ginseng cv. Damaya. The library contains 141,312 clones, with an average insert size of 110 kb, each likely containing approximately 20–30 genes. The clones of the library have all been arrayed in 384-well microplates and permanently archived. We screened the library and identified BIBAC clones containing nine genes likely involved in the biosynthesis pathway of ginsenosides—the major medicinally effective compounds of ginseng—with approximately four BIBACs per gene. This result further verified the quality of the library and demonstrated its utility in cloning, characterization and utilization of economically important genes in ginseng. Furthermore, since the library is cloned in a plant-transformation-competent BIBAC vector (pCLD04541) that can be directly transformed in a variety of plants via both the Agrobacterium-mediated method and the particle bombardment method, we have also demonstrated the stability of large-insert ginseng DNA BIBACs in different Agrobacterium strains, which is crucial to large-insert BIBAC transformation in plants. Therefore, the Jilin ginseng BIBAC library provides resources and tools useful for functional genomics research, and cloning, characterization and utilization of economically important genes in the species.  相似文献   

16.
Tansakul P  Shibuya M  Kushiro T  Ebizuka Y 《FEBS letters》2006,580(22):5143-5149
Panax ginseng produces triterpene saponins called ginsenosides, which are classified into two groups by the skeleton of aglycones, namely dammarane type and oleanane type. Dammarane-type ginsenosides dominate over oleanane type not only in amount but also in structural varieties. However, their sapogenin structure is restricted to two aglycones, protopanaxadiol and protopanaxatriol. So far, the genes encoding oxidosqualene cyclase (OSC) responsible for formation of dammarane skeleton have not been cloned, although OSC yielding oleanane skeleton (β-amyrin synthase) has been successfully cloned from this plant. In this study, cDNA cloning of OSC producing dammmarane triterpene was attempted from hairy root cultures of P. ginseng by homology based PCR method. A new OSC gene (named as PNA) obtained was expressed in a lanosterol synthase deficient (erg7) Saccharomyces cerevisiae strain GIL77. LC-MS and NMR analyses identified the accumulated product in the yeast transformant to be dammarenediol-II, demonstrating PNA to encode dammarenediol-II synthase.  相似文献   

17.
为了扩大人参(Panax ginseng)栽培面积, 解决人参资源日益短缺的问题, 研究了人参皂苷与生态因子之间的相关性。利用超高效液相(UPLC)色谱法, 测定了辽宁、吉林和黑龙江三省不同产区人参样品中3种人参皂苷(Rg1、Re和Rb1)的含量, 并基于“中药材产地适宜性分析地理信息系统”(TCMGIS)平台, 获得采样区域10个生态因子(包括活动积温、年平均气温、海拔、相对湿度、年日照时数、年降水量、7月最高气温、7月平均气温、1月最低气温和1月平均气温等)数据; 利用因子分析法对16个人参基地进行因子得分评价, 得分最高的是吉林和辽宁的人参基地, 故将吉林和辽宁的人参基地作为人参生态适宜性分析的最佳区域; 通过偏最小二乘回归法建立3种人参皂苷成分与上述10个生态因子间的回归方程并获取其相应的权重, 结果发现多个温度因子与人参皂苷含量呈强负相关关系, 说明热量因子对人参皂苷活性成分的累积起主要作用, 而水分因子、地理因子和光照因子与人参皂苷含量呈弱相关关系; 以因子得分最高的吉林和辽宁人参基地为基点区域, 分别对3种人参皂苷进行单成分生态适宜性区划以及综合区划, 得知3种人参皂苷成分积累的最佳区域主要集中在长白山脉, 而燕山山脉和太行山脉只有少量分布区域。  相似文献   

18.
Although many reports have been published regarding the pharmacological effects of ginseng, little is known about the biochemical pathways operant in ginsenoside biosynthesis, or the genes involved therein. Proteomics analysis is an approach to elucidate the physiological characteristics and biosynthetic pathways of ginsenosides, main components of ginseng. In this review, we introduced the recent progress in proteomics studies of ginseng (Panax ginseng C.A. Meyer). We briefly reference the genomic analyses of P. ginseng, without which proteomics approaches would have been impossible. Functional genomics studies regarding secondary metabolism in P. ginseng are also introduced here, in order to introduce possible future prospects for further study.  相似文献   

19.
《Plant science》2005,169(5):833-841
Roots of mountain ginseng (Panax ginseng) were exposed to various levels of oxygen (O2) (30, 40 and 50%) for 15, 30 and 45 days in 5 L (working volume 4 L) airlift bioreactors. Ginsenoside accumulation and dry weight was enhanced up to 40% O2; but thereafter declined ginsenoside and dry weight of the roots by increasing level of O2. Gradual increase in H2O2 content and lipoxygenase activity (LOX), resulting in cellular damage and oxidative stress as indicated by increased malondialdehyde (MDA) content after 30 and 45 days at all O2 levels was shown. Increased levels of O2 (above ambient) resulted in increases in non-protein thiol (NP-SH) and cysteine content. Higher activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), catalase (CAT), guaiacol peroxidase (G-POD), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S transferase (GST) activities indicated that antioxidant enzymes played an important role in protecting the roots from O2 up to 45 days, except at 50% O2 where GR, GST and GPx decreased compared to the control. However, after 45 days, SOD activity decreased significantly compared to the control in the O2-treated roots. This reflects the sensitivity of enzymes to O2 toxicity. In stress related experiment, roots showed increased synthesis of ginsenosides when 25 and 50 μM H2O2 was applied. However, higher dose and increasing treatment inhibited ginsenoside synthesis. The results indicate that plant roots could grow and protect themselves from O2 stress by coordinated induction of various antioxidant enzymes and metabolite contents. These results suggest that O2 supplementation is useful for ginsenoside accumulation using 5-L bioreactors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号