首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Summary This work addresses the problem of stable butanol formation byClostridium acetobutylicum in continuous culture. Sustained altered electron flow was observed in the presence of benzyl viologen which serves to redirect carbon flow towards primarily butanol formation. A yield of butanol of over 0.28 g.g–1 glucose was obtained and butanol comprised over 90% of the total solvents formed. Additionally, acid formation decreased significantly with butyric acid as the dominant acid end product.  相似文献   

2.
Peguin  S.  Delorme  P.  Goma  G.  Soucaille  P. 《Biotechnology letters》1994,16(3):269-274
Summary Batch cultures of Clostridium acetobutylicum at controlled pH values of 5 and 5.5 were carried out in a three-electrode potentiometric system with methyl viologen (1 mM) as electron carrier. Although an irreversible loss of methyl viologen at the electrode surface was observed, a significant increase in alcohol yield was obtained. In comparison to control fermentation with or without methyl viologen addition, the butanol yield improvements were respectively of 7 or 51% at pH 5, and 56 or 467% at pH 5.5.  相似文献   

3.
The physiological response of Clostridium acetobutylicum to methyl and benzyl viologen was investigated. Viologen dyes at low concentrations (at levels of parts per million [micrograms per milliliter]) caused significant metabolic shifts. Altered electron flow appeared to direct carbon flow from acid to alcohol production accompanied by decreased hydrogen evolution. Reducing equivalents normally released as free hydrogen were directed toward formation of NADH which, in turn, resulted in increased alcohol production. In addition, it was shown that solvent production can take place at pH 6.3. Contrary to previous reports, butanol production appears to be independent of high levels of acetate-butyrate and glucose.  相似文献   

4.
A possible way to improve the economic efficacy of acetone–butanol–ethanol fermentation is to increase the butanol ratio by eliminating the production of other by-products, such as acetone. The acetoacetate decarboxylase gene (adc) in the hyperbutanol-producing industrial strain Clostridium acetobutylicum EA 2018 was disrupted using TargeTron technology. The butanol ratio increased from 70% to 80.05%, with acetone production reduced to approximately 0.21 g/L in the adc-disrupted mutant (2018adc). pH control was a critical factor in the improvement of cell growth and solvent production in strain 2018adc. The regulation of electron flow by the addition of methyl viologen altered the carbon flux from acetic acid production to butanol production in strain 2018adc, which resulted in an increased butanol ratio of 82% and a corresponding improvement in the overall yield of butanol from 57% to 70.8%. This study presents a general method of blocking acetone production by Clostridium and demonstrates the industrial potential of strain 2018adc.  相似文献   

5.
Continuous cultures of two strains of Clostridium acetobutylicum were stable for over 70 d when grown on glucose/glycerol mixtures. Butanol was the major fermentation end-product, accounting for 43 to 62% (w/w) of total products. Low-grade glycerol [65% (w/v) purity] could replace commercial glycerol [87% (w/v) purity], leading to a similar fermentation pattern: a butanol yield of 0.34 (mol/mol), a butanol productivity of 0.42 g l–1 h–1 and a 84% (w/w) glycerol consumption were attained when cultures were grown at pH 6 and D = 0.05 h–1; butanol accounted for 94% (w/w) of total solvents. These values are among the highest reported in literature for C. acetobutylicum simple chemostats.  相似文献   

6.
7.
Summary Controlled batch experiments performed withClostridium acetobutylicum show that methyl viologen induces solvent production at near neutral pH. At a pH of 6.8, significant ethanol production was observed in presence of methyl viologen. At pH 5, production of butanol and ethanol are favored at the expense of acetone.  相似文献   

8.
Solventogenic clostridia are well-known since almost a century due to their unique capability to biosynthesize the solvents acetone and butanol. Based on recently developed genetic engineering tools, a targeted 3-hydroxybutyryl-CoA dehydrogenase (Hbd)-negative mutant of Clostridium acetobutylicum was generated. Interestingly, the entire butyrate/butanol (C4) metabolic pathway of C. acetobutylicum could be inactivated without a severe growth limitation and indicated the general feasibility to manipulate the central fermentative metabolism for product pattern alteration. Cell extracts of the mutant C. acetobutylicum hbd::int(69) revealed clearly reduced thiolase, Hbd and crotonase but increased NADH-dependent alcohol dehydrogenase enzyme activities as compared to the wildtype strain. Neither butyrate nor butanol were detected in cultures of C. acetobutylicum hbd::int(69), and the formation of molecular hydrogen was significantly reduced. Instead up to 16 and 20 g/l ethanol were produced in glucose and xylose batch cultures, respectively. Further sugar addition in glucose fed-batch fermentations increased the ethanol production to a final titer of 33 g/l, resulting in an ethanol to glucose yield of 0.38 g/g.  相似文献   

9.
To improve butanol selectivity, Clostridium acetobutylicum M5(pIMP1E1AB) was constructed by adhE1-ctfAB complementation of C. acetobutylicum M5, a derivative strain of C. acetobutylicum ATCC 824, which does not produce solvents due to the lack of megaplasmid pSOL1. The gene products of adhE1-ctfAB catalyze the formation of acetoacetate and ethanol/butanol with acid re-assimilation in solventogenesis. Effects of the adhE1-ctfAB complementation of M5 were studied by batch fermentations under various pH and glucose concentrations, and by flux balance analysis using a genome-scale metabolic model for this organism. The metabolically engineered M5(pIMP1E1AB) strain was able to produce 154 mM butanol with 9.9 mM acetone at pH 5.5, resulting in a butanol selectivity (a molar ratio of butanol to total solvents) of 0.84, which is much higher than that (0.57 at pH 5.0 or 0.61 at pH 5.5) of the wild-type strain ATCC 824. Unlike for C. acetobutylicum ATCC 824, a higher level of acetate accumulation was observed during fermentation of the M5 strain complemented with adhE1 and/or ctfAB. A plausible reason for this phenomenon is that the cellular metabolism was shifted towards acetate production to compensate reduced ATP production during the largely growth-associated butanol formation by the M5(pIMP1E1AB) strain.  相似文献   

10.
Iron effect on acetone-butanol fermentation   总被引:5,自引:0,他引:5  
WhenClostridium acetobutylicum was grown in batch culture under iron limitation (0.2 mg·l–1) at a pH of 4.8, glucose was fermented, to butanol as the major fermentation end product, and small quantities of acetic acid were produced. The final conversion yield of glucose into butanol could be increased from 20% to 30% by iron limitation. The acetonebutanol ratio was changed from 3.7 (control) to 11.8. Hydrogenase specific activity was decreased by 40% and acetoacetate decarboxylase specific activity by 25% under iron limitation. Thus, iron limitation affects carbon and electron flow in addition to hydrogenase.  相似文献   

11.
The biological production of butanol has become an important research field and thanks to genome sequencing and annotation; genome-scale metabolic reconstructions have been developed for several Clostridium species. This work makes use of the iCAC490 model of Clostridium acetobutylicum ATCC 824 to analyze its metabolic capabilities and response to an external electron supply through a constraint-based approach using the Constraint-Based Reconstruction Analysis Toolbox. Several analyses were conducted, which included sensitivity, production envelope, and phenotypic phase planes. The model showed that the use of an external electron supply, which acts as co-reducing agent along with glucose-derived reducing power (electrofermentation), results in an increase in the butanol-specific productivity. However, a proportional increase in the butyrate uptake flux is required. Besides, the uptake of external butyrate leads to the coupling of butanol production and growth, which coincides with results reported in literature. Phenotypic phase planes showed that the reducing capacity becomes more limiting for growth at high butyrate uptake fluxes. An electron uptake flux allows the metabolism to reach the growth optimality line. Although the maximum butanol flux does not coincide with the growth optimality line, a butyrate uptake combined with an electron uptake flux would result in an increased butanol volumetric productivity, being a potential strategy to optimize the production of butanol by C. acetobutylicum ATCC 824.  相似文献   

12.
Electrochemical energy as a source of reducing equivalent was applied to the cultures ofClostridum acetobutylicum to understand the effects of the pressure by reducing equivalent on anaerobic bacteria. The fermentation byC. acetobutylicum with methyl viologen and electrochemical energy produced more butanol (up to 26%) than the control culture, whilst less acetone (up to 25%) was produced. But no effect was observed on the growth of the culture. These results were indirectly supported byin vitro electrochemical reduction of NAD+ and artificial electron carriers.  相似文献   

13.
During the fermentation process, Clostridium acetobutylicum cells are often inhibited by the accumulated butanol. However, the mechanism underlying response of C. acetobutylicum to butanol stress remains poorly understood. This study was performed to clarify such mechanism through investigating the butanol stress-associated intracellular biochemical changes at acidogenesis phase (i.e., middle exponential phase) and solventogenesis phase (i.e., early stationary phase) by a gas chromatography-mass spectrometry-based metabolomics strategy. With the aid of partial least-squares-discriminant analysis, a pairwise discrimination between control group and butanol-treated groups was revealed, and 27 metabolites with variable importance in the projection value greater than 1 were identified. Under butanol stress, the glycolysis might be inhibited while TCA cycle might be promoted. Moreover, changes of lipids and fatty acids compositions, amino acid metabolism and osmoregulator concentrations might be the key factors involved in C. acetobutylicum metabolic response to butanol stress. It was suggested that C. acetobutylicum cells might change the levels of long acyl chain saturated fatty acids and branched-chain amino acids to maintain the integrity of cell membrane through adjusting membrane fluidity under butanol stress. The increased level of glycerol was considered to be correlated with osmoregulation and regulating redox balance. In addition, increased levels of some amino acids (i.e., threonine, glycine, alanine, phenylalanine, tyrosine, tryptophan, aspartate and glutamate) might also confer butanol tolerance to C. acetobutylicum. These results highlighted our knowledge about the response or adaptation of C. acetobutylicum to butanol stress, and would contribute to the construction of feasible butanologenic strains with higher butanol tolerance.  相似文献   

14.
Clostridium acetobutylicum is a natural producer of butanol, butyrate, acetone and ethanol. The pattern of metabolites reflects the partitioning of redox equivalents between hydrogen and carbon metabolites. Here the exogenous genes of ferredoxin-NAD(P)+ oxidoreductase (FdNR) and trans-enoyl-coenzyme reductase (TER) are introduced to three different Clostridium acetobutylicum strains to investigate the distribution of redox equivalents and butanol productivity. The FdNR improves NAD(P)H availability by capturing reducing power from ferredoxin. A butanol production of 9.01 g/L (36.9% higher than the control), and the highest ratios of butanol/acetate (7.02) and C4/C2 (3.17) derived metabolites were obtained in the C acetobutylicum buk- strain expressing FdNR. While the TER functions as an NAD(P)H oxidase, butanol production was decreased in the C. acetobutylicum strains containing TER. The results illustrate that metabolic flux can be significantly changed and directed into butanol or butyrate due to enhancement of NAD(P)H availability by controlling electron flow through the ferredoxin node.  相似文献   

15.
丙酮丁醇梭菌作为极具潜力的新型生物燃料丁醇的生产菌,受到各国研究学者的广泛关注。通过丙酮丁醇梭菌(ABE)发酵生产丁醇,由于生产成本高,限制了其工业化应用。随着基因组学和分子生物学的快速发展,适用于丙酮丁醇的基因编辑工具不断发展并应用于提高菌株的发酵性能。本文对丙酮丁醇梭菌基因编辑工具和代谢工程改造取得的进展进行综述。  相似文献   

16.
Extractive fermentation has been proposed to enhance the productivity of fermentations that are end product inhibited. Unfortunately, good extractants for butanol, such as decanol, are toxic to Clostridium acetobutylicum. The use of mixed extractants, namely, mixtures of toxic and nontoxic coextractants, was proposed to circumvent this toxicity. Decanol appeared to inhibit butanol formation by C. acetobutylicum when present in a mixed extractant that also contained oleyl alcohol. However, maintenance of the pH at 4.5 alleviated the inhibition of butanol production and the consumption of butyrate during solventogenesis. A mixed extractant that contained 20% decanol in oleyl alcohol enhanced butanol formation by 72% under pH-controlled conditions. The production of acetone and acetoin was also increased, even though these two products were not extractable. The enhancement of butanol formation was not limited by the toxicity of decanol. Supplementation of glucose and butyrate in the extractive fermentation yielded a 47% increase in butanol. The enhancement of butanol formation appeared to be dependent on the presence of dissolved decanol in the broth but was not observed unless an organic phase was present to extract butanol. A mechanism for the effects of decanol on product formation is proposed.  相似文献   

17.
Summary When continuous, steady-state, glucose-limited cultures ofClostridium acetobutylicum were sparged with CO, the completely or almost completely acidogenic fermentations became solventogenic. Alcohol (butanol and ethanol) and lactate production at very high specific production rates were initiated and sustained without acetone, and little or no acetate and butyrate formation. In one fermentation, strong butyrate uptake without acetone formation was observed. Growth could be sustained even with 100% inhibition of H2 formation. Although CO gasing inhibited growth up to 50%, and H2 formation up to 100%, it enhanced the rate of glucose uptake up to 300%. TheY ATP was strongly affected and mostly reduced with respect to its steady-state value. The results support the hypothesis that solvent formation is triggered by an altered electron flow.  相似文献   

18.

Background  

Clostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel. For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood as fully as possible.  相似文献   

19.
In this study, an efficient acetone-butanol-ethanol (ABE) fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1) extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2) enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3) direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology.  相似文献   

20.
Summary Reliable assay systems were developed for the detection and quantitation of butanol dehydrogenase and butyraldehyde dehydrogenase in extracts of Clostridium acetobutylicum. Butanol dehydrogenase was NADPH-dependent. The enzyme could be sparated by ultracentrifugation from a NADH-specific enzyme which probably represents the ethanol dehydrogenase but which also reacted with butyraldehyde to form butanol. Butyraldehyde dehydrogenase proved to be NADH-specific. All enzymes were induced shortly before butanol formation began. Specific activities decreased at the end of the fermentation process. An explanation for contradictory data in the literature is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号