首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Gastric acid responses to intragastric administration of graded doses (14-30-45 mg/Kg) of copper (II) complexes with aminoacids (two simple complexes, Cu-Trp2 and Cu-Phe2, and on mixed complex, Cu-Trp-Phe) were investigated in Shay rats. The results (% inhibition of H+ mEq/4h) shown that graded doses of copper complexes caused a progressive inhibition on gastric acid secretion, and that percentage inhibition values were, for all complexes, in linear correlation with employed doses. A possible mechanism by which copper complexes affect gastric acid secretion is discussed.  相似文献   

2.
New platinum(II) complexes of cyclopentanecarboxylic acid hydrazide (cpcah) were prepared, characterized by elemental analysis, IR and 1H NMR spectra, and evaluated for in vitro cytotoxicity in Friend leukemia (FL) and A2780 ovarian tumor cells, induction of apoptosis in FL cells, as well as for in vivo antitumor activity toward murine L1210 leukemia and Lewis lung carcinoma. The spectral analyses indicated a cis-square planar structure of the complexes with hydrazide ligand coordinated via the NH2 group. The compounds exerted significantly lower in vitro and in vivo toxicities as compared with those of cisplatin (cis-diamminedichloroplatinum(II), DDP). On the other hand, the complex [Pt(NH3)(cpcah)Cl2] exhibited antitumor activity against L1210 leukemia in mice comparable to that of cisplatin, resulting at a dose of 42 mg/kg (administered 3 times) in a T/C (mean survival time) of 280%. This compound displayed an in vitro macromolecular synthesis inhibition pattern similar to that of DDP. At concentrations close to the cytostatic ones (10-20 microM) this complex, as well as DDP, was able to induce apoptosis in FL cells as shown by neutral comet assay and morphological analysis. We concluded that there is a correlation between the ability of platinum complexes to induce apoptosis and their antitumor activity.  相似文献   

3.
The effect of 21 methionine-platinum(II) and (IV) complexes on growth and division of cells in maize seedling roots has been studied. The studied complexes did not possess properties inherent in typical cytostatic compounds, e.g. cis-dichlorodiammineplatinum (DDP). They inhibited root growth at higher concentrations as compared to DDP. In contrast to DDP, the studied complexes inhibited cell elongation to a similar or greater extent than cell division, did not prevent lateral root formation, and their inhibitory effect did not change with time. No correlation between the level of tumor growth inhibition and the pattern of root growth was observed.  相似文献   

4.
Abstract

Addition of amino acids, glycine, alanine, and serine, to poorly soluble copper(II) salts [copper(II) citrate and copper(II) succinate] all increase solubility of the copper(II) salts. Relative increases in solubility follow the polarity trend in the selected amino acids, with serine creating the greatest increase in solubility. Simultaneous equilibria calculations indicate the formation of mixed-ligand complexes in the copper(II) succinate–amino acid systems, the first time such mixed-ligand complexes have been observed. In contrast, mixed-ligand complexes are not predicted in the copper(II) citrate–amino acid systems. Potential bioavailability of copper(II) appears to be increased by the inclusion of amino acids in solution, roughly in parallel with the increase in solubility of the copper(II) salt. Therefore, measurement of the change in solubility caused by addition of amino acids to aqueous solution gives qualitative insight to the potential increase in bioavailability of the metal ion.  相似文献   

5.
Considering the important role of antioxidants in biological systems, the group of copper(II) complexes derived from salicylaldehyde and alpha- or beta-alanine and its thiourea derivative and copper(II) complexes derived from pyruvic acid and beta-alanine were studied. The antiradical activity of the tested compounds was studied by both in vitro and in vivo methods. The chemical methods based on inhibition of INT-formazane or 3-nitrotyrosine formation were used for the evaluation of SOD-mimic and antiperoxynitrite activity, respectively. In the case of in vivo activity evaluation, an alloxan-induced diabetes mellitus model in mice was used, the mechanism of action of alloxan being closely connected with the formation of free radicals selectively damaging the pancreatic beta-cells. Since all the substances studied showed different positive effects, it is obvious that they have not acted only as a source of copper(II) ions but their effect is related to their specific chelate structure. The obtained results are a contribution to the knowledge of copper(II) Schiff base complexes with ligands of aldimine or ketimine type and form the basis for further preclinical tests of these bioactive agents in biological models of oxidative stress.  相似文献   

6.
The cytoprotective effect of various copper(II) complexes on the gastric mucosa damage induced by acute intragastric administration of ethanol was investigated. For in vitro experiments, the following copper(II) complexes were tested: Cu(II)(L-Trp)(L-Phe), Cu(II)(L-Leu)Cu(II)(L-Leu-Leu)(L-Leu), Cu(II)(L-Phe-L-Leu), Cu(II)(Gly-His-Lys), and Cu(II)(cyHis)2(ClO4)2. Inorganic copper such as CuSO4 was also tested. The free radical generating system, acting for 2 hr on cardial and fundic mucosa scrapings or mucosal microsomes, was Fe++ (20 microM)/ascorbate (0.25 mM). We found a marked inhibition to 75% of lipid peroxidation in the range 10-100 mM, regardless of whether copper was given in complexed or inorganic form. The results suggest that nontoxic copper(II)-amino acid complexes are able to neutralize oxygen-derived free radicals. In addition, copper(II) complexes suppressed membrane lipid peroxidation when mucosa homogenates were exposed to t-butyl hydroperoxide (1-20 microM) plus Fe++ (50 microM). In vivo experiments on rat stomachs, pretreated p.o. by gavage either with Cu(II)(L-Trp)(L-Phe) as paradigmatic agent or with copper sulphate at equivalent doses in the range 3-30 mg/kg body weight showed a significant decrease (30 min after 95% ethanol administration) in the number and severity of mucosal hemorrhagic lesions. In the gastric mucosa scrapings of copper-treated rats after ethanol exposure, we found that malondialdehyde and conjugated diene levels were unchanged compared to those of untreated controls; five enzyme activities released from lysosomes were near control values. In isolated mucosal cells, whether or not pretreated with 200 microM solution of either Cu(II)(L-Trp)(L-Phe) or CuSO4, the release of cathepsin D activity was also unmodified. The results suggest that the cytoprotective effect of Cu(II) complexes against ethanol-induced mucosal lesions was not associated in vivo to lipid peroxidation.  相似文献   

7.
The equilibrium distribution of copper(II) and zinc(II) ions among a mixture of 17 amino acids has been computed from stability-constant and blood-plasma-composition data. At pH7.4, 98% of the copper(II) in the simulated plasma solution is co-ordinated to histidine and cystine, predominantly as the mixed-ligand complexes [Cu.His.Cystine](-) and [Cu.H.His.Cystine]. Approximately half of the zinc(II) is co-ordinated to cysteine and histidine, but appreciable complex-formation occurs with most of the other amino acids. Stability constants are given for copper(II) and zinc(II) amino acid complexes, including some mixed-ligand species, at 37 degrees C and I=0.15m.  相似文献   

8.
Properties of the reactions of dithiocarbamates and their Cu(II) or Fe(III) complexes with Ehrlich cells were determined and related to their effects on the inhibition of cell proliferation caused by bleomycin and Cu bleomycin. In complete culture medium containing Eagle's minimal essential medium plus Earles salts and 2.5% fetal calf serum, dimethyl- and diethyldithiocarbamates and their copper complexes inhibit cell proliferation and cause cell death. The copper complexes are more effective agents. Ferric tris-diethyldithiocarbamate is also a cytotoxic species. In contrast, when cells are exposed to dimethyldithiocarbamate or its copper complex in Ringer's buffer under metal-restricted condition, washed, and then placed in complete medium, the copper complex is much more active in inhibiting cell growth. The difference is magnified when dihydroxyethyldithiocarbamate and N-methylglucamine dithiocarbamate and their copper complexes are compared in complete media. Incubation of bleomycin or copper bleomycin with Ehrlich cells in Ringer's buffer with or without dimethyldithiocarbamate or bis-dimethyldithiocarbamato Cu(II) leads to no enhancement of cytotoxicity from combinations of agents, except when the two copper complexes are present. Diethyl- or dimethyldithiocarbamate readily extracts copper from Cu(II)bleomycin and iron from Fe(III)bleomycin when ethylacetate is present to remove the tris-dithiocarbamato Fe(III) complex from aqueous solution. When bis-dimethyldithiocarbamato Cu(II) is incubated with Ehrlich cells, copper is released from the complex and bound to high molecular weight and metallothionein fractions. A reductive mode of dissociation of the copper complexes in cells is supported by ESR experiments. Reactions of diethyl- and dimethyldithiocarbamato Cu(II) with thiol compounds demonstrates one possible mechanism of reduction of these complexes.  相似文献   

9.
In this study, the overall stability constants of copper(II) complexes with some alpha-amino acids (glycine, dl-alanine, dl-valine, l-leucine, l-asparagine, l-glutamine) were determined by potentiometric titration in water, 25% dioxan-75% water, 35% dioxan-65% water, 50% dioxan-50% water, and 60% dioxan-40% water. The titrations were performed at 25 degrees C, under nitrogen atmosphere, and the ionic strength of the medium was maintained at 0.10 M by using sodium perchlorate. The formation curves of their complexes (n-p[L]) were obtained by means of the titration data. Then the stability constants were determined in relation to these curves. The mol ratio of copper(II) to alpha-amino acid was also determined and it was found that the complexes were CuL(2) type. Another important result obtained was that the tendency of amino acids to form complexes with copper(II) was greater in dioxan-water mixtures compared to water.  相似文献   

10.
This report describes the synthesis and structural analysis of stable copper(II) cysteine complexes. Pale pink copper(II) cysteine complexes were synthesized in mole ratios of 1:2, 1:4, and 1:6 of copper(II):cysteine in ethanol. Infrared spectroscopy and X-ray absorption spectroscopy confirmed that copper(II) binding occurred via the thiol ligand of cysteine. XANES analysis showed that the oxidation state of copper remained as copper(II) and the local atomic geometry was similar in all of the cysteine complexes. The EXAFS data indicate that the copper(II) cysteine complexes are forming ring type structures with sulfur ligands from the cysteines acting as bridging ligands. X-ray diffraction revealed that the copper(II) cysteine complexes formed monoclinic cells with maximum crystallinity found in the 1:4 copper(II):cysteine complex.  相似文献   

11.
We report studies on the interaction of some zinc(II) and copper(II) complexes of amines and amino acids with poly(dC-dG) and poly(dm5C-dG). Of the zinc complexes the species zinc-tris(2-aminoethyl) amine is found to be the most efficient for inducing Z-DNA giving a mid point at low ionic strength of 1.4 microM (poly(dC-dG] and 44nM (poly(dm5C-dG). While an antagonistic effect on raising the ionic strength is observed, the transition occurs at only 2 microM for poly(dm5C-dG) at 150mM NaCl. The most efficient copper(II) complex is that of diethylene triamine, though copper(II) complexes are generally less efficient than zinc(II) complexes. We also report kinetic and thermodynamic studies upon the B-Z transition induced by these complexes. A model is proposed for the interaction of one of the zinc complexes which involves not only direct zinc-DNA binding but also the formation of hydrogen bonds between the metal bond amine groups and the residues adjacent to the coordination site.  相似文献   

12.
Four new platinum(II) complexes of 3-aminocyclopentanespiro-5-hydantoin (acpsh) and 3-aminocycloheptanespiro-5-hydantoin (achpsh) were synthesized and characterized by elemental analysis, IR and 1NMR spectra. The spectral analyses indicated a cis-square planar structure of the complexes with ligands coordinated via the NH2 group. The complexes were evaluated for in vitro cytotoxicity in murine erythroleukemia (MEL) cells, clone F4N, using cell-growth and macromolecular synthesis assay. The compounds, with exception of [Pt(NH3)(achpsh)Cl2] (IV), exhibited much lower cytotoxicity than that of cisplatin (DDP). Compound IV was nearly as cytotoxic as DDP. The new complexes exerted low antibacterial activity as assessed by seven bacterial strains.  相似文献   

13.
The antitumor activity of forty nine different metal complexes of the first transition series against mouse leukemia L 1210 cells and of two of the complexes against Ehrlich ascites carcinoma have been tested in vitro by the method described in this paper. Eight complexes showed a 50% inhibition of tumor cell division at concentration level 5–6 μg/ml of the complex for the former and two most effective complexes also for the latter. The trans-bis-(salicylaldoximato)copper(II) and trans-bis(resorcylaldoximato)copper(II) complexes were found to possess the highest antitumor activity.  相似文献   

14.
Reaction of EDTA/DTPA dianhydride with aromatic/heterocyclic sulfonamides afforded a series of derivatives incorporating polyaminopolycarboxylate tails and benzenesulfonamide or 1,3,4-thiadiazole-2-sulfonamide heads. These compounds have been used as ligands to prepare Cu(II) complexes. Both parent sulfonamides as well as their copper complexes behaved as potent inhibitors of four carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic CA I and II, and transmembrane CA IX and XII. Some Cu(II) complexes showed subnanomolar affinities and some selectivity for the inhibition of the tumor-associated isoforms IX and XII and might be used as PET hypoxia markers of tumors.  相似文献   

15.
The genotoxic effects of six cis-platinum(II)chloramine complexes with different alkyl substituents on their amine ligands have been measured using Escherichia coli. The toxicity and mutagenicity of these compounds were compared, after exposure of bacteria, to drug concentrations which gave known quantities of platinum-DNA lesions. The results permit several observations concerning structure-activity relations of platinum(II) complexes. Firstly, methyl substitution on the amine ligands of cis-diamminedichloro-platinum(II) (DDP) is reported to reduce its antitumor activity. The methyl group did not exert an effect in bacteria where the toxicity and mutagenicity of cis-bis(methylamine)dichloroplatinum(II) and DDP were equivalent. In fact, at equal levels of DNA binding, complexes with substituted amines were generally more toxic toward bacteria than DDP. Secondly, replacement of the chloro groups of DDP by nitrato ligands increased its toxicity and mutagenicity at a given level of DNA binding. Hence, although DDP and its dinitrato derivative have identical ammine ligands, they may form different platinum-DNA lesions in bacteria. Finally, cis-bis(cyclohexylamine)-dichloroplatinum(II) was unique among the compounds studied since it did not cause bacterial filamentation or mutagenesis. These results suggest that, although this compound binds to the bacterial genome, it may not induce the SOS response.  相似文献   

16.
The inhibition of the catechol oxidase activity exhibited by three dinuclear copper(II) complexes, derived from different diaminotetrabenzimidazole ligands, by kojic acid [5-hydroxy-2-(hydroxymethyl)-γ-pyrone] has been studied. The catalytic mechanism of the catecholase reaction proceeds in two steps and for both of these inhibition by kojic acid is of competitive type. The inhibitor binds strongly to the dicopper(II) complex in the first step and to the dicopper-dioxygen adduct in the second step, preventing in both cases the binding of the catechol substrate. Binding studies of kojic acid to the dinuclear copper(II) complexes and a series of mononuclear analogs, carried out spectrophotometrically and by NMR, enable us to propose that the inhibitor acts as a bridging ligand between the metal centers in the dicopper(II) catalysts. Received: 23 August 1999 / Accepted: 20 January 2000  相似文献   

17.
It has been shown that the inflammation associated with rheumatoid arthritis can be reduced using copper complexes. In order to improve the bioavailability of copper and hence efficacy of these complexes we have synthesized three different series of ligands, each having different characteristics. Thermodynamic results for copper(II) complexes for these polyamino, diaminodiamido and triaminodiamido ligands are presented. The polyamino ligands form the most stable complexes in vivo but tissue distribution studies in mice show that [Cu(3,6,9,12-tetraazatetradecanedioate)] is excreted rapidly, unchanged in the urine. The diamino ligand complexes are much less stable than their polyamino analogues and animal studies using [Cu(N,N'-bis[2-(dimethylamino)ethyl]-ethanediamide)H2] indicate that the complex dissociates in vivo and is excreted slowly via the liver. The triaminodiamido copper(II) complexes are approximately 2 log units more stable than their diamino analogues. Computer simulation calculations indicate that these complexes are also likely to dissociate in plasma. Measured partition coefficients, however, suggest the possibility of dermal absorption.  相似文献   

18.
Thirty-seven metal chelate complexes of salts of 8-quinolinols with aromatic hydroxycarboxylic acids were screened by the disc-plate method against strains of five bacteria and five fungi. The copper (II) chelates of 8-quinolinolium salicylate and 8-quinolinolium-3′-hydroxy-2′-naphthoate showed outstanding antifungal and good antibacterial properties and appear to be potentially more economical than copper (II) 8-quinolinolate.  相似文献   

19.
Formation equilibria of copper(II) complexes of 2-(aminomethyl)-benzimidazole (AMBI) and the ternary complexes Cu(AMBI)L (L = amino acid, amide, dicarboxylic acid or DNA constituents) have been investigated. Ternary complexes of amino acids or amides are formed by a simultaneous mechanism. Amino acids form the complex Cu(AMBI)L, whereas amides form two complex species Cu(AMBI)L and Cu(AMBI)(LH−1). The ternary complexes of copper(II) with AMBI and dicarboxylic acids or DNA units are formed by a stepwise mechanism, whereby binding of copper(II) to AMBI is followed by ligation of the dicarboxylic acids or DNA components. The values of Δ log K indicate that the ternary complexes containing aromatic amino acids are significantly more stable than the complexes containing alkyl- and hydroxyalkyl-substituted amino acids. This may be taken as an evidence for a stacking interaction between the aromatic moiety of AMBI and the aromatic side chains of the bio-active ligands. The solid complexes Cu(AMBI)L where L = 1,1-cyclobutanedicarboxylic acid (CBDCA) and malonic acid were separated and identified by elemental analysis and infrared spectroscopy and magnetic moment. The decomposition course and steps for the isolated complexes were analyzed and the kinetic parameters of the non-isothermal decomposition were calculated. The hydrolysis of glycine methyl ester (MeGly) is catalyzed by the Cu(AMBI)2+ complex. The kinetic data is fitted assuming that the hydrolysis reaction proceeds in two steps. The first step, involving coordination of the amino acid ester by the amino and carbonyl groups, is followed by rate-determining attack by OH ion. The second step involves the equilibrium formation of the hydroxo-complex Cu(AMBI)(MeGly)(OH) followed by intramolecular OH attack.  相似文献   

20.
Copper(II) and zinc(II) complexes of a polyamino-polyol ligand 1,3,5-trideoxy-1,3,5-tris(methylamino)-cis-inositol (tmci) have been investigated as potential candidates for the selective elimination of the 5'-cap structure of mRNA. A cap-model compound ApppA has been utilised as substrate for studying the effect of the different metal ion complex catalysts on the hydrolysis of the triphosphate bridge. Kinetic experiments have been performed by the variation of pH, metal-to-ligand ratio and total concentrations of the metal ion and ligand. The zinc(II) complexes of tmci have been proved to possess a remarkable activity for the hydrolysis of ApppA. The observed rate enhancement compared to the uncatalysed reaction was found to be 12,000-fold, in the presence of 4.5mM zinc(II) and 1.5mM tmci at pH approximately 7.5. In contrast with the copper(II) containing systems, an extra product has also been formed during the cleavage process, beside the expected AMP and ADP. According to the ESI-MS characterisation of the samples, the additional product is a covalent phosphoester adduct of AMP and the ligand. The formation of this species is initiated by a nucleophilic attack of a zinc(II)-bound alcohol or alkoxo group on one of the alpha phosphate groups of ApppA, which leads to the formation of a phosphodiester bond. In an alternative pathway, the substrate is cleaved into AMP and ADP. According to the pH-potentiometric studies, performed with the tmci-zinc(II) system, di- and trinuclear complexes are responsible for the accelerated ApppA hydrolysis. The copper(II)-tmci 2:1 system showed only a modest kinetic activity. The rate acceleration significantly increased when threefold excess of copper(II) was applied. Although, the detailed investigations above pH approximately 6.6 have been prevented by precipitate formation during the addition of the substrate into the reaction solution, the activity of the copper(II)-tmci 3:1 system does not exceed that of the zinc(II) complexes. Due to the specific mechanism leading to the covalent extra product, the zinc(II) complexes of tmci provide a comparable rate enhancement for ApppA hydrolysis to the widely studied lanthanide or copper(II) species, in spite of the fact that they are stronger Lewis acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号