首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radial spokes are critical multisubunit structures required for normal ciliary and eukaryotic flagellar motility. Experimental evidence indicates the radial spokes are mechanochemical transducers that transmit signals from the central pair apparatus to the outer doublet microtubules for local control of dynein activity. Recently, progress has been made in identifying individual components of the radial spoke, yet little is known about how the radial spoke is assembled or how it performs in signal transduction. Here we focus on radial spoke protein 3 (RSP3), a highly conserved AKAP located at the base of the radial spoke stalk and required for radial spoke assembly on the doublet microtubules. Biochemical approaches were taken to further explore the functional role of RSP3 within the radial spoke structure and for control of motility. Chemical crosslinking, native gel electrophoresis, and epitope-tagged RSP3 proteins established that RSP3 forms a dimer. Analysis of truncated RSP3 proteins indicates the dimerization domain coincides with the previously characterized axoneme binding domain in the N-terminus. We propose a model in which each radial spoke structure is built on an RSP3 dimer, and indicating that each radial spoke can potentially localize multiple PKAs or AKAP-binding proteins in position to control dynein activity and flagellar motility.  相似文献   

2.
Genetic and in vitro analyses have revealed that radial spokes play a crucial role in regulation of ciliary and flagellar motility, including control of waveform. However, the mechanisms of regulation are not understood. Here, we developed a novel procedure to isolate intact radial spokes as a step toward understanding the mechanism by which these complexes regulate dynein activity. The isolated radial spokes sediment as 20S complexes that are the size and shape of radial spokes. Extracted radial spokes rescue radial spoke structure when reconstituted with isolated axonemes derived from the radial spoke mutant pf14. Isolated radial spokes are composed of the 17 previously defined spoke proteins as well as at least five additional proteins including calmodulin and the ubiquitous dynein light chain LC8. Analyses of flagellar mutants and chemical cross-linking studies demonstrated calmodulin and LC8 form a complex located in the radial spoke stalk. We postulate that calmodulin, located in the radial spoke stalk, plays a role in calcium control of flagellar bending.  相似文献   

3.
Motile cilia and flagella are highly conserved organelles that play important roles in human health and development. We recently discovered a calmodulin- and spoke-associ-ated complex (CSC) that is required for wild-type motility and for the stable assembly of a subset of radial spokes. Using cryo-electron tomography, we present the first structure-based localization model of the CSC. Chlamydomonas flagella have two full-length radial spokes, RS1 and RS2, and a shorter RS3 homologue, the RS3 stand-in (RS3S). Using newly developed techniques for analyzing samples with structural heterogeneity, we demonstrate that the CSC connects three major axonemal complexes involved in dynein regulation: RS2, the nexin-dynein regulatory complex (N-DRC), and RS3S. These results provide insights into how signals from the radial spokes may be transmitted to the N-DRC and ultimately to the dynein motors. Our results also indicate that although structurally very similar, RS1 and RS2 likely serve different functions in regulating flagellar motility.  相似文献   

4.
Dynein motors and regulatory complexes repeat every 96 nm along the length of motile cilia. Each repeat contains three radial spokes, RS1, RS2, and RS3, which transduct signals between the central microtubules and dynein arms. Each radial spoke has a distinct structure, but little is known about the mechanisms of assembly and function of the individual radial spokes. In Chlamydomonas, calmodulin and spoke-associated complex (CSC) is composed of FAP61, FAP91, and FAP251 and has been linked to the base of RS2 and RS3. We show that in Tetrahymena, loss of either FAP61 or FAP251 reduces cell swimming and affects the ciliary waveform and that RS3 is either missing or incomplete, whereas RS1 and RS2 are unaffected. Specifically, FAP251-null cilia lack an arch-like density at the RS3 base, whereas FAP61-null cilia lack an adjacent portion of the RS3 stem region. This suggests that the CSC proteins are crucial for stable and functional assembly of RS3 and that RS3 and the CSC are important for ciliary motility.  相似文献   

5.
For virtually all cilia and eukaryotic flagella, the second messengers calcium and cyclic adenosine monophosphate are implicated in modulating dynein- driven microtubule sliding to regulate beating. Calmodulin (CaM) localizes to the axoneme and is a key calcium sensor involved in regulating motility. Using immunoprecipitation and mass spectrometry, we identify members of a CaM-containing complex that are involved in regulating dynein activity. This complex includes flagellar-associated protein 91 (FAP91), which shares considerable sequence similarity to AAT-1, a protein originally identified in testis as an A-kinase anchor protein (AKAP)- binding protein. FAP91 directly interacts with radial spoke protein 3 (an AKAP), which is located at the base of the spoke. In a microtubule sliding assay, the addition of antibodies generated against FAP91 to mutant axonemes with reduced dynein activity restores dynein activity to wild-type levels. These combined results indicate that the CaM- and spoke-associated complex mediates regulatory signals between the radial spokes and dynein arms.  相似文献   

6.
Radial spokes are conserved macromolecular complexes that are essential for ciliary motility. A triplet of three radial spokes, RS1, RS2, and RS3, repeats every 96 nm along the doublet microtubules. Each spoke has a distinct base that docks to the doublet and is linked to different inner dynein arms. Little is known about the assembly and functions of individual radial spokes. A knockout of the conserved ciliary protein FAP206 in the ciliate Tetrahymena resulted in slow cell motility. Cryo–electron tomography showed that in the absence of FAP206, the 96-nm repeats lacked RS2 and dynein c. Occasionally, RS2 assembled but lacked both the front prong of its microtubule base and dynein c, whose tail is attached to the front prong. Overexpressed GFP-FAP206 decorated nonciliary microtubules in vivo. Thus FAP206 is likely part of the front prong and docks RS2 and dynein c to the microtubule.  相似文献   

7.
The flagellum of Trypanosoma brucei is a multifunctional organelle with critical roles in motility and other aspects of the trypanosome life cycle. Trypanin is a flagellar protein required for directional cell motility, but its molecular function is unknown. Recently, a trypanin homologue in Chlamydomonas reinhardtii was reported to be part of a dynein regulatory complex (DRC) that transmits regulatory signals from central pair microtubules and radial spokes to axonemal dynein. DRC genes were identified as extragenic suppressors of central pair and/or radial spoke mutations. We used RNA interference to ablate expression of radial spoke (RSP3) and central pair (PF16) components individually or in combination with trypanin. Both rsp3 and pf16 single knockdown mutants are immotile, with severely defective flagellar beat. In the case of rsp3, this loss of motility is correlated with the loss of radial spokes, while in the case of pf16 the loss of motility correlates with an aberrant orientation of the central pair microtubules within the axoneme. Genetic interaction between trypanin and PF16 is demonstrated by the finding that loss of trypanin suppresses the pf16 beat defect, indicating that the DRC represents an evolutionarily conserved strategy for dynein regulation. Surprisingly, we discovered that four independent mutants with an impaired flagellar beat all fail in the final stage of cytokinesis, indicating that flagellar motility is necessary for normal cell division in T. brucei. These findings present the first evidence that flagellar beating is important for cell division and open the opportunity to exploit enzymatic activities that drive flagellar beat as drug targets for the treatment of African sleeping sickness.  相似文献   

8.
Radial spokes (RSs) play an essential role in the regulation of axonemal dynein activity and thus of ciliary and flagellar motility. However, few details are known about the complexes involved. Using cryo-electron tomography and subtomogram averaging, we visualized the three-dimensional structure of the radial spokes in Chlamydomonas flagella in unprecedented detail. Unlike many other species, Chlamydomonas has only two spokes per axonemal repeat, RS1 and RS2. Our data revealed previously uncharacterized features, including two-pronged spoke bases that facilitate docking to the doublet microtubules, and that inner dyneins connect directly to the spokes. Structures of wild type and the headless spoke mutant pf17 were compared to define the morphology and boundaries of the head, including a direct RS1-to-RS2 interaction. Although the overall structures of the spokes are very similar, we also observed some differences, corroborating recent findings about heterogeneity in the docking of RS1 and RS2. In place of a third radial spoke we found an uncharacterized, shorter electron density named "radial spoke 3 stand-in," which structurally bears no resemblance to RS1 and RS2 and is unaltered in the pf17 mutant. These findings demonstrate that radial spokes are heterogeneous in structure and may play functionally distinct roles in axoneme regulation.  相似文献   

9.
Radial spokes are a conserved axonemal structural complex postulated to regulate the motility of 9 + 2 cilia and flagella via a network of phosphoenzymes and regulatory proteins. Consistently, a Chlamydomonas radial spoke protein, RSP3, has been identified by RII overlays as an A-kinase anchoring protein (AKAP) that localizes the cAMP-dependent protein kinase (PKA) holoenzyme by binding to the RIIa domain of PKA RII subunit. However, the highly conserved docking domain of PKA is also found in the N termini of several AKAP-binding proteins unrelated to PKA as well as a 24-kDa novel spoke protein, RSP11. Here, we report that RSP11 binds to RSP3 directly in vitro and colocalizes with RSP3 toward the spoke base near outer doublets and dynein motors in axonemes. Importantly, RSP11 mutant pf25 displays a spectrum of motility, from paralysis with flaccid or twitching flagella as other spoke mutants to wildtype-like swimming. The wide range of motility changes reversibly depending on the condition of liquid media without replacing defective proteins. We postulate that radial spokes use the RIIa/AKAP module to regulate ciliary and flagellar beating; absence of the spoke RIIa protein exposes a medium-sensitive regulatory mechanism that is not obvious in wild-type Chlamydomonas.  相似文献   

10.
Ciliary and flagellar motility is regulated by changes in intraflagellar calcium. However, the molecular mechanism by which calcium controls motility is unknown. We tested the hypothesis that calcium regulates motility by controlling dynein-driven microtubule sliding and that the central pair and radial spokes are involved in this regulation. We isolated axonemes from Chlamydomonas mutants and measured microtubule sliding velocity in buffers containing 1 mM ATP and various concentrations of calcium. In buffers with pCa > 8, microtubule sliding velocity in axonemes lacking the central apparatus (pf18 and pf15) was reduced compared with that of wild-type axonemes. In contrast, at pCa4, dynein activity in pf18 and pf15 axonemes was restored to wild-type level. The calcium-induced increase in dynein activity in pf18 axonemes was inhibited by antagonists of calmodulin and calmodulin-dependent kinase II. Axonemes lacking the C1 central tubule (pf16) or lacking radial spoke components (pf14 and pf17) do not exhibit calcium-induced increase in dynein activity in pCa4 buffer. We conclude that calcium regulation of flagellar motility involves regulation of dynein-driven microtubule sliding, that calmodulin and calmodulin-dependent kinase II may mediate the calcium signal, and that the central apparatus and radial spokes are key components of the calcium signaling pathway.  相似文献   

11.
In the 9 + 2 axoneme, radial spokes are structural components attached to the A-tubules of the nine outer doublet microtubules. They protrude toward the central pair microtubule complex with which they have transient but regular interactions for the normal flagellar motility to occur. Flagella of Chlamydomonas mutants deficient in entire radial spokes or spoke heads are paralyzed. In this study the importance of two radial spoke proteins in the flagellar movement is exemplified by the potent inhibitory action of two monoclonal antibodies on the axonemal motility of demembranated-reactivated Chlamydomonas models. We show that one of these proteins is localized on the stalk of the radial spokes, whereas the other is a component of the head of the same structure and most likely correspond to radial spoke protein 2 and 1, respectively. Fine motility analysis by videomicrography further indicates that these two anti-radial spoke protein antibodies at low concentration affect motility of demembranated-reactivated Chlamydomonas by changing the flagellar waveform without modifying axonemal beat frequency. They also modify wave amplitude differently during motility inhibition. This brings more direct evidence for the involvement of both radial spoke stalk and head in the fine tuning of the waveform during flagellar motility.  相似文献   

12.
The radial spokes are required for Ca(2+)-initiated intraflagellar signaling, resulting in modulation of inner and outer arm dynein activity. However, the mechanochemical properties of this signaling pathway remain unknown. Here, we describe a novel nucleoside diphosphate kinase (NDK) from the Chlamydomonas flagellum. This protein (termed p61 or RSP23) consists of an N-terminal catalytic NDK domain followed by a repetitive region that includes three IQ motifs and a highly acidic C-terminal segment. We find that p61 is missing in axonemes derived from the mutants pf14 (lacks radial spokes) and pf24 (lacks the spoke head and several stalk components) but not in those from pf17 (lacking only the spoke head). The p61 protein can be extracted from oda1 (lacks outer dynein arms) and pf17 axonemes with 0.5 M KI, and copurifies with radial spokes in sucrose density gradients. Furthermore, p61 contains two classes of calmodulin binding site: IQ1 interacts with calmodulin-Sepharose beads in a Ca(2+)-independent manner, whereas IQ2 and IQ3 show Ca(2+)-sensitive associations. Wild-type axonemes exhibit two distinct NDKase activities, at least one of which is stimulated by Ca(2+). This Ca(2+)-responsive enzyme, which accounts for approximately 45% of total axonemal NDKase, is missing from pf14 axonemes. We found that purified radial spokes also exhibit NDKase activity. Thus, we conclude that p61 is an integral component of the radial spoke stalk that binds calmodulin and exhibits Ca(2+)-controlled NDKase activity. These observations suggest that nucleotides other than ATP may play an important role in the signal transduction pathway that underlies the regulatory mechanism defined by the radial spokes.  相似文献   

13.
Radial spokes of the eukaryotic flagellum extend from the A tubule of each outer doublet microtubule toward the central pair microtubules. In the paralyzed flagella mutant of Chlamydomonas pf14, a mutation in the gene for one of 17 polypeptides that comprise the radial spokes results in flagella that lack all 17 spoke components. The defective gene product, radial spoke protein 3 (RSP3), is, therefore, pivotal to the assembly of the entire spoke and may attach the spoke to the axoneme. We have synthesized RSP3 in vitro and assayed its binding to axonemes from pf14 cells to determine if RSP3 can attach to spokeless axonemes. In vitro, RSP3 binds to pf14 axonemes, but not to wild-type axonemes or microtubules polymerized from purified chick brain tubulin. The sole axoneme binding domain of RSP3 is located within amino acids 1-85 of the 516 amino acid protein; deletion of these amino acids abolishes binding by RSP3. Fusion of amino acids 1-85 or 42-85 to an unrelated protein confers complete or partial binding activity, respectively, to the fusion protein. Transformation of pf14 cells with mutagenized RSP3 genes indicates that amino acids 18-87 of RSP3 are important to its function, but that the carboxy-terminal 140 amino acids can be deleted with little effect on radial spoke assembly or flagellar motility.  相似文献   

14.
We provide indirect evidence that six axonemal proteins here referred to as "dynein regulatory complex" (drc) are located in close proximity with the inner dynein arms I2 and I3. Subsets of drc subunits are missing from five second-site suppressors, pf2, pf3, suppf3, suppf4, and suppf5, that restore flagellar motility but not radial spoke structure of radial spoke mutants. The absence of drc components is correlated with a deficiency of all four heavy chains of inner arms I2 and I3 from axonemes of suppressors pf2, pf3, suppf3, and suppf5. Similarly, inner arm subunits actin, p28, and caltractin/centrin, or subsets of them, are deficient in pf2, pf3, and suppf5. Recombinant strains carrying one of the mutations pf2, pf3, or suppf5 and the inner arm mutation ida4 are more defective for I2 inner arm heavy chains than the parent strains. This evidence indicates that at least one subunit of the drc affects the assembly of and interacts with the inner arms I2.  相似文献   

15.
16.
Flagellum in sperm is composed of over 200 different proteins and is essential for sperm motility. In particular, defects in the assembly of the radial spoke in the flagellum result in male infertility due to loss of sperm motility. However, mechanisms regulating radial spoke assembly remain unclear in metazoans.Here, we identified a novel Drosophila protein radial spoke binding protein 15(RSBP15) which plays an important role in regulating radial spoke assembly. Loss of RSBP15 results in complete lack of mature sperms in seminal vesicles(SVs), asynchronous individualization complex(IC) and defective "9 + 2"structure in flagella. RSBP15 is colocalized with dRSPH3 in sperm flagella, and interacts with dRSPH3 through its DD_R_PKA superfamily domain which is important for the stabilization of dRSPH3. Moreover,loss of dRSPH3, as well as dRSPH1, dRSPH4 a and dRSPH9, showed similar phenotypes to rsbp15 KO mutant. Together, our results suggest that RSBP15 acts in stabilizing the radial spoke protein complex to anchor and strengthen the radial spoke structures in sperm flagella.  相似文献   

17.
In addition to the previously studied pf-14 and pf-1 loci in Chlamydomonas reinhardtii, mutations for another five genes (pf-17, pf- 24, pf-25, pf-26, and pf-27) have been identified and characterized as specifically affecting the assembly and function of the flagellar radial spokes. Mutants for each of the newly identified loci show selective alterations for one or more of the 17 polypeptides in the molecular weight range of 20,000-130,000 which form the radial spoke structure. In specific instances the molecular defect has been correlated with altered radial spoke morphology. Biochemical analysis of in vivo complementation in mutant X wild-type dikaryons has provided indirect evidence that mutations for four of the five new loci (pf-17, pf-24, pf-25, and pf-26) reside in structural genes for spoke components. In the case of pf-24, the identity of the mutant gene product was supported by analysis of induced intragenic revertants. In contrast to the other radial spoke mutants thus far investigated, evidence suggests that the gene product in pf-27 is extrinsic to the radial spokes and is required for the specific in vivo phosphorylation of spoke polypeptides.  相似文献   

18.
The radial spoke is a stable structural complex in the 9 + 2 axoneme for the control of flagellar motility. However, the spokes in Chlamydomonas mutant pf24 are heterogeneous and unstable, whereas several spoke proteins are reduced differentially. To elucidate the defective mechanism, we clone RSP16, a prominent spoke protein diminished in pf24 axonemes. Unexpectedly, RSP16 is a novel HSP40 member of the DnaJ superfamily that assists chaperones in various protein-folding-related processes. Importantly, RSP16 is uniquely excluded from the 12S spoke precursor complex that is packaged in the cell body and transported toward the flagellar tip to be converted into mature 20S axonemal spokes. Rather, RSP16, transported separately, joins the precursor complex in flagella. Furthermore, RSP16 molecules in vitro and in flagella form homodimers, a characteristic required for the cochaperone activity of HSP40. We postulate that the spoke HSP40 operates as a cochaperone to assist chaperone machinery at the flagellar tip to actively convert the smaller spoke precursor and itself into the mature stable complex; failure of the interaction between the spoke HSP40 and its target polypeptide results in heterogeneous unstable radial spokes in pf24.  相似文献   

19.
To understand the mechanisms that regulate the assembly and activity of flagellar dyneins, we focused on the I1 inner arm dynein (dynein f) and a null allele, bop5-2, defective in the gene encoding the IC138 phosphoprotein subunit. I1 dynein assembles in bop5-2 axonemes but lacks at least four subunits: IC138, IC97, LC7b, and flagellar-associated protein (FAP) 120—defining a new I1 subcomplex. Electron microscopy and image averaging revealed a defect at the base of the I1 dynein, in between radial spoke 1 and the outer dynein arms. Microtubule sliding velocities also are reduced. Transformation with wild-type IC138 restores assembly of the IC138 subcomplex and rescues microtubule sliding. These observations suggest that the IC138 subcomplex is required to coordinate I1 motor activity. To further test this hypothesis, we analyzed microtubule sliding in radial spoke and double mutant strains. The results reveal an essential role for the IC138 subcomplex in the regulation of I1 activity by the radial spoke/phosphorylation pathway.  相似文献   

20.
Genetic and morphological studies have revealed that the radial spokes regulate ciliary and flagellar bending. Functional and biochemical analysis and the discovery of calmodulin in the radial spokes suggest that the regulatory mechanism involves control of axonemal protein phosphorylation and calcium binding to spoke proteins. To identify potential regulatory proteins in the radial spoke, in-gel kinase assays were performed on isolated axonemes and radial spoke fractions. The results indicated that radial spoke protein 2 (RSP2) can bind ATP and transfer phosphate in vitro. RSP2 was cloned and mapped to the PF24 locus, a gene required for motility. Sequencing revealed that pf24 contains a point mutation converting the first ATG to ATA, resulting in only trace amounts of RSP2 and confirming the RSP2 mapping. Surprisingly, the sequence does not include signature domains for conventional kinases, indicating that RSP2 may not perform as a protein kinase in vivo. However, the predicted RSP2 protein sequence contains Ca2+-dependent calmodulin binding motifs and a GAF domain, a domain found in diverse signaling proteins for binding small ligands including cyclic nucleotides. As predicted from the sequence, recombinant RSP2 binds calmodulin in a calcium-dependent manner. We postulate that RSP2 is a regulatory subunit of the radial spoke involved in localization of calmodulin for control of motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号