首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Measuring the activity of neuronal populations with calcium imaging can capture emergent functional properties of neuronal circuits with single cell resolution. However, the motion of freely behaving animals, together with the intermittent detectability of calcium sensors, can hinder automatic monitoring of neuronal activity and their subsequent functional characterization. We report the development and open-source implementation of a multi-step cellular tracking algorithm (Elastic Motion Correction and Concatenation or EMC2) that compensates for the intermittent disappearance of moving neurons by integrating local deformation information from detectable neurons. We demonstrate the accuracy and versatility of our algorithm using calcium imaging data from two-photon volumetric microscopy in visual cortex of awake mice, and from confocal microscopy in behaving Hydra, which experiences major body deformation during its contractions. We quantify the performance of our algorithm using ground truth manual tracking of neurons, along with synthetic time-lapse sequences, covering a wide range of particle motions and detectability parameters. As a demonstration of the utility of the algorithm, we monitor for several days calcium activity of the same neurons in layer 2/3 of mouse visual cortex in vivo, finding significant turnover within the active neurons across days, with only few neurons that remained active across days. Also, combining automatic tracking of single neuron activity with statistical clustering, we characterize and map neuronal ensembles in behaving Hydra, finding three major non-overlapping ensembles of neurons (CB, RP1 and RP2) whose activity correlates with contractions and elongations. Our results show that the EMC2 algorithm can be used as a robust and versatile platform for neuronal tracking in behaving animals.  相似文献   

3.
Neurons in cortical sensory regions receive modality-specific information through synapses that are located on their dendrites. Recently, the use of two-photon microscopy combined with whole-cell recordings has helped to identify visually evoked dendritic calcium signals in mouse visual cortical neurons in vivo. The calcium signals are restricted to small dendritic domains ('hotspots') and they represent visual synaptic inputs that are highly tuned for orientation and direction. This protocol describes the experimental procedures for the recording and the analysis of these visually evoked dendritic calcium signals. The key points of this method include delivery of fluorescent calcium indicators through the recording patch pipette, selection of an appropriate optical plane with many dendrites, hyperpolarization of the membrane potential and two-photon imaging. The whole protocol can be completed in 5-6 h, including 1-2 h of two-photon calcium imaging in combination with stable whole-cell recordings.  相似文献   

4.
Activity of neurons if foveal striate and prestriate cortex of trained rhesus monkeys was recorded with metal microelectrodes. While animals fixated a small spot at a given fixation distance (38 or 57 cm), bright or dark bars moving across a frontoparallel plane were presented at different depths in a range of +/- 10 cm about the fixation distance. Almost all cells showed binocular interaction. Neurons with balanced ocularity (approximately equal monocular responses) usually facilitated each other and were tuned to depth around the plane of fixation often with inhibitory flanks nearer and further. Neurons with unbalanced ocularity either inhibited each other or had asymmetric depth sensitivity profiles, i.e. activation by stimuli in front and suppression by stimuli behind the fixation plane (near cells) or vice versa (far cells). Thus striate and prestriate cortex of the monkey contains four subsets of binocular cells which may contribute to depth perception.  相似文献   

5.
6.
神经系统中存在大量下行投射,与上行输入一起形成复杂的前馈与反馈回路,调控神经信号的传导和处理,但目前对皮层内反馈投射的功能作用认识还比较薄弱.通过微量注射抑制性神经递质γ-氨基丁酸(γ-aminobutyric acid,GABA),使猫纹外皮层后内侧外上雪氏区(area posteromedial lateral suprasylvian,PMLS)局部可逆性失活,使用胞外记录方法,研究初级视皮层17区神经元反应特性的变化.实验结果显示,PMLS区失活后,17区细胞对运动刺激的反应总体减弱,反应的相对稳定性基本不变,最高发放率/自发之比有所下降.与此同时,细胞的方向选择性指数减小,朝向选择性无显著变化.除少数"双向"反应细胞外,绝大部分细胞的最优方向基本不变.进一步分析发现,细胞对各个方向刺激的反应普遍下降,最优方向上的下降程度最大,是导致方向选择性减弱的主要原因.这些结果表明,PMLS区反馈投射可增强初级视皮层的方向选择性,而对朝向选择性影响有限.这一作用特点体现了PMLS区在皮层中偏重处理运动视觉信息的功能.  相似文献   

7.
Wang JW  Wong AM  Flores J  Vosshall LB  Axel R 《Cell》2003,112(2):271-282
An understanding of the logic of odor perception requires a functional analysis of odor-evoked patterns of activity in neural assemblies in the brain. We have developed a sensitive imaging system in the Drosophila brain that couples two-photon microscopy with the specific expression of the calcium-sensitive fluorescent protein, G-CaMP. At natural odor concentration, each odor elicits a distinct and sparse spatial pattern of activity in the antennal lobe that is conserved in different flies. Patterns of glomerular activity are similar upon imaging of sensory and projection neurons, suggesting the faithful transmission of sensory input to higher brain centers. Finally, we demonstrate that the response pattern of a given glomerulus is a function of the specificity of a single odorant receptor. The development of this imaging system affords an opportunity to monitor activity in defined neurons throughout the fly brain with high sensitivity and excellent spatial resolution.  相似文献   

8.
Peaks in more than 5000 spike train correlograms, obtained from monkey striate cortex, were measured. Earlier work had shown qualitatively that there are frequent prominent peaks having widths in a range around 50 ms, and narrower peaks less than about 7 ms wide. Here we demonstrate that the distribution of peak widths shows a dichotomy.  相似文献   

9.
Inhibitory glycine receptors (GlyRs) are mainly expressed in the spinal cord and in the midbrain, where they control motor and sensory pathways. We describe here a fast potentiation of GlyR by intracellular Ca2+. This phenomenon was observed in rat spinal cord neurons and in transfected human cell lines. Potentiation develops in <100 ms, is proportional to Ca2+ influx, and is characterized by an increase in GlyR apparent affinity for glycine. Phosphorylation and G protein pathways appear not to be involved in the potentiation mechanism. Single-channel recordings in cell-attached and excised patches, as well as whole-cell data suggest the presence of a diffusible cytoplasmic factor that modulates the GlyR channel gating properties. Ca2+-induced potentiation may be important for rapid modulation of glycinergic synapses.  相似文献   

10.
11.
Vogels R 《Neuron》2012,74(3):429-431
In this issue of Neuron, Ohayon et?al. (2012) utilize fMRI-guided single-cell recordings to demonstrate the importance of contrast polarity features for face-selective responses in macaque temporal cortex, as predicted by a computer vision face detection algorithm.  相似文献   

12.
Tactile information is actively acquired and processed in the brain through concerted interactions between movement and sensation. Somatosensory input is often the result of self-generated movement during the active touch of objects, and conversely, sensory information is used to refine motor control. There must therefore be important interactions between sensory and motor pathways, which we chose to investigate in the mouse whisker sensorimotor system. Voltage-sensitive dye was applied to the neocortex of mice to directly image the membrane potential dynamics of sensorimotor cortex with subcolumnar spatial resolution and millisecond temporal precision. Single brief whisker deflections evoked highly distributed depolarizing cortical sensory responses, which began in the primary somatosensory barrel cortex and subsequently excited the whisker motor cortex. The spread of sensory information to motor cortex was dynamically regulated by behavior and correlated with the generation of sensory-evoked whisker movement. Sensory processing in motor cortex may therefore contribute significantly to active tactile sensory perception.  相似文献   

13.
Using an in vitro traumatic injury model, we examined the effects of mechanical (stretch) injury on intracellular Ca2+ store-mediated signaling in cultured cortical neurons using fura-2. We previously found that elevation of [Ca2+](i) by the endoplasmic reticulum Ca2+-ATPase inhibitor, thapsigargin, was abolished 15 min post-injury. In the current studies, pre-injury inhibition of phospholipase C with neomycin sulfate maintained Ca2+-replete stores 15 min post-injury, suggesting that the initial injury-induced store depletion may be due to increased inositol trisphosphate production. Thapsigargin-stimulated elevation of [Ca2+](i) returned with time after injury and was potentiated at 3 h. Stimulation with thapsigargin in Ca2+-free media revealed that the size of the Ca2+ stores was normal at 3 h post-injury. However, Ca2+ influx triggered by depletion of intracellular Ca2+ stores (capacitative Ca2+ influx) was enhanced 3 h after injury. Enhancement was blocked by inhibitors of cytosolic phospholipase A2 and cytochrome P450 epoxygenase. Since intracellular Ca2+ store-mediated signaling plays an important role in neuronal function, the observed changes may contribute to dysfunction produced by traumatic brain injury. Additionally, our results suggest that capacitative Ca2+ influx may be mediated by both conformational coupling and a diffusible messenger synthesized by the combined action of cytosolic PLA2 and P450.  相似文献   

14.
15.
A highly interconnected network of arterioles overlies mammalian cortex to route blood to the cortical mantle. Here we test if this angioarchitecture can ensure that the supply of blood is redistributed after vascular occlusion. We use rodent parietal cortex as a model system and image the flow of red blood cells in individual microvessels. Changes in flow are quantified in response to photothrombotic occlusions to individual pial arterioles as well as to physical occlusions of the middle cerebral artery (MCA), the primary source of blood to this network. We observe that perfusion is rapidly reestablished at the first branch downstream from a photothrombotic occlusion through a reversal in flow in one vessel. More distal downstream arterioles also show reversals in flow. Further, occlusion of the MCA leads to reversals in flow through approximately half of the downstream but distant arterioles. Thus the cortical arteriolar network supports collateral flow that may mitigate the effects of vessel obstruction, as may occur secondary to neurovascular pathology.  相似文献   

16.
Mitochondria show extensive movement along neuronal processes, but the mechanisms and function of this movement are not clearly understood. We have used high-resolution confocal microscopy to simultaneously monitor movement of mitochondria and changes in intracellular [Ca2+] ([Ca2+]i) in rat cortical neurons. A significant percentage (27%) of the total mitochondria in cortical neuronal processes showed movement over distances of >2 µM. The average velocity was 0.52 µm/s. The velocity, direction, and pattern of mitochondrial movement were not affected by transient increases in [Ca2+]i associated with spontaneous firing of action potentials. Stimulation of Ca2+ transients with forskolin (10 µM) or bicuculline (10 µM), or sustained elevations of [Ca2+]i evoked by glutamate (10 µM) also had no effect on mitochondrial transit. Neither removal of extracellular Ca2+, depletion of intracellular Ca2+ stores with thapsigargin, or inhibition of synaptic activity with TTX (1 µM) or a cocktail of CNQX (10 µM) and MK801 (10 µM) affected mitochondrial movement. These results indicate that movement of mitochondria along processes is a fundamental activity in neurons that occurs independently of physiological changes in [Ca2+]i associated with action potential firing, synaptic activity, or release of Ca2+ from intracellular stores. calcium transient; dendrites  相似文献   

17.
Using the whole-cell patch-clamp technique, Ca2+ channel currents were examined in three distinct types of neurons derived from rat primary visual cortex. Callosal-projecting and superior colliculus-projecting neurons were identified following in vivo retrograde labeling with fluorescent "beads." A subset of intrinsic GABAergic visual cortical neurons was identified with the monoclonal antibody VC1.1. Although high voltage-activated Ca2+ channel currents were measured in all three cell types, clear differences in the densities of these channels were observed. There were also marked variations in the relative amplitudes of the inactivating and noninactivating components of the high voltage-activated currents, suggesting that N- and L-type Ca2+ channels are differentially distributed. Although low voltage-activated or T-type currents were measured in subsets of both types of projection neurons, they were not observed in VC1.1-positive cells. These results provide a direct demonstration that voltage-gated Ca2+ channels are expressed in neurons of the mammalian visual cortex and reveal that the distribution and densities of different Ca2+ channel types in diverse classes of visual cortical neurons are distinct.  相似文献   

18.
19.
Peters  A.  Sethares  C. 《Brain Cell Biology》1997,26(12):779-797
In previous publications we proposed a model of cortical organization in which the pyramidal cells of the cerebral cortex are organized into modules. The modules are centred around the clusters of apical dendrites that originate from the layer 5 pyramidal cells. In monkey striate cortex such modules have an average diameter of 23 μm and the outputs originating from the modules are contained in the vertical bundles of myelinated axons that traverse the deeper layers of the cortex. The present study is concerned with how the double bouquet cells in layer 2/3 of striate cortex relate to these pyramidal cell modules. The double bouquet cells are visualized with an antibody to calbindin, and it has been shown that their vertically oriented axons, or horse tails, are arranged in a regular array, such that there is one horse tail per pyramidal cell module. Within layer 2/3 the double bouquet cell axons run alongside the apical dendritic clusters, while in layer 4C they are closely associated with the myelinated axon bundles. However, the apical dendrites are not the principal targets of the double bouquet cell axons. Most of the neuronal elements post-synaptic to them are the shafts of small dendrites (60%) and dendritic spines, with which they form symmetric synapses. This regular arrangement of the axons of the double-bouquet cells and their relationship to the components of the pyramidal cells modules supports the concept that there are basic, repeating neuronal circuits in the cortex.  相似文献   

20.
We determined the location of 54 horseradish peroxidase (HRP)-labeled motor cortical neuron synaptic terminals on 17 parvocellular neurons in the monkey red nucleus. Synaptic terminals and their postsynaptic elements were identified and reconstructed, using light- and electron-microscopic techniques, from serial thick and thin sections. Terminals were found on proximal and distal dendrites of small and medium-sized parvocellular neurons, where they formed excitatory synapses. Some were 180 microns from cell somata. Approximately half of the labeled terminals, aside from those located at dendritic origins, were situated strategically at or near dendritic branch points. Since monkey parvocellular neurons show little activity during movement, the obvious next question is this: How and in what way does motor cortex influence these cells?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号